首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以福建省建瓯市万木林自然保护区6个优势树种为研究对象,使用Li-6400便携式光合测定仪离体测定6个树种1—5级细根呼吸速率。单因素和双因素方差分析表明:树种、序级及其交互作用对6种树种细根比根呼吸均有极显著影响(P<0.01);6种树种细根比根呼吸均随序级的升高呈极显著下降(P<0.01),这种变化可分别用二次函数,三次函数,指数函数或幂函数来拟合。相关性分析表明比根长和氮浓度可以很好地表征同一树种不同序级细根的比根呼吸,但两者不能有效表征不同树种同一序级的比根呼吸。协方差分析表明:细根比根呼吸与比根长的相关性在不同树种间具有显著差异,但在不同序级间则表现一致;细根比根呼吸与氮浓度的相关性则在不同树种和序级间均表现不一致。结果表明细根内部存在明显的功能异质性,而比根长可反映特定树种细根的这种功能异质性。  相似文献   

2.
以中亚热带常绿阔叶林外生菌根树种罗浮栲和丛枝菌根树种木荷为研究对象,采用根袋法进行野外原位氮添加试验,研究了细根形态性状(比根长、比表面积、组织密度、平均根直径)和构型性状(分枝数、分枝比、根长增长速率、根尖密度、分枝密度),分析不同菌根树种细根形态和构型性状对氮沉降的响应.结果表明:随序级增加,外生和丛枝菌根树种细根...  相似文献   

3.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   

4.
植物经济谱能够阐述维管植物在资源获取和储存之间的权衡策略, 为理解生态位分化和物种共存机制等提供科学依据。该研究通过对武夷山49种木本植物的单叶面积(ILA)、比叶面积(SLA)、叶碳含量(LCC)、叶氮含量(LNC)和叶磷含量(LPC)等5个叶片性状以及根组织密度(RTD)、比根长(SRL)、比根面积(SRA)、根碳含量(RCC)、根氮含量(RNC)和根磷含量(RPC)等6个细根性状进行测定, 探讨木本植物叶片与细根经济谱是否存在以及常绿和落叶物种间的植物经济谱差异。结果表明: 沿着性状贡献率相对较大的PC1轴, 能够定义出叶经济谱(LES)、根经济谱(RES)和整株植物经济谱(WPES)。大部分常绿物种分布在经济谱保守的一侧, 而大部分落叶物种聚集在获取的一侧。此外, 叶片PC1、细根PC1和整株植物PC1的两两得分之间均存在显著正相关关系, 常绿和落叶物种具有共同的异速指数, 但不存在共同的异速常数。这些结果揭示了亚热带物种叶片与细根的策略遵循着WPES的协调整合, 表明叶片、细根以及整株植物之间是采取协同变化的资源策略, 而分布于经济谱两端的常绿和落叶物种则是通过不同的方式来构建WPES。  相似文献   

5.
亚热带6种树种细根序级结构和形态特征   总被引:4,自引:0,他引:4  
以福建省建瓯市万木林自然保护区内占优势的6种天然林树种(沉水樟Cinnamomum micranthum,CIM;观光木Tsoongiodendron odorum Chun,TOC;浙江桂Cinnamomum chekiangense,CIC;罗浮栲Castanopsis fabri,CAF;细柄阿丁枫Altingiagracilipes,ALG;米槠Castanopsis carlesii,CAC)为研究对象,对其1—5级细根的结构,形态特征及生物量进行了分析。结果表明:沉水樟,细柄阿丁枫和米槠细根分支比表现出在1,2级(4倍以上)明显大于其它序级(3倍左右);其余3种树种则是在3,4级的细根分支比最大,其中浙江桂达到8.65倍,其它序级则大致为3倍左右。6种树种1,2级细根数量占到总数的70%—90%。6种树种细根直径,根长,组织密度随序级升高逐渐增大,比根长减小,生物量未表现出一致的变化规律,6种树种生物量主要集中在高级根部分。方差分析表明,树种对细根分支比例有显著影响(P<0.05),浙江桂和米槠细根分支水平对分支比例有极显著影响(P<0.01),其余4种树种分支水平对分支比例有显著影响(P<0.05),树种和分支水平的交互作用对6种树种细根分支比均有极显著的影响(P<0.01);树种对细根根长,直径以及生物量均有极显著影响(P<0.01),对比根长有显著影响(P<0.05),而对组织密度的影响则不显著(P>0.05);树种和序级的交互作用对细根根长,直径以及生物量均有极显著影响(P<0.01),对组织密度有显著影响(P<0.05),对比根长影响不显著(P>0.05)。序级对6种树种细根根长,直径,比根长以及生物量的影响并未达到一致,对6种树种细根组织密度有极显著影响(P<0.01)。树种间1—4级根的比根长变异主要由组织密度引起,而5级根的比根长变异则由直径引起,同时在1级根中组织密度与直径呈现出权衡的关系。6种树种细根数量,直径,根长,比根长,组织密度以及生物量与序级之间回归分析发现它们与序级之间具有指数函数,线性函数,二次函数,三次函数或者幂函数关系。  相似文献   

6.
7.
8.
叶和细根(2mm)是森林生态系统的分解主体,二者是否协同分解,将极大影响所属植物在生态系统碳(C)循环中的物种效应。已有研究显示,叶和细根的分解关系具有极大的不确定性,认为很大程度上归因于细根内部具有高度的异质性,导致叶和细根在功能上不相似。为此,使用末梢1级根和细根根枝作为研究对象,它们在功能上同叶类似,称为吸收根。通过分解包法,分别在黑龙江帽儿山和广东鹤山,研究了2个阔叶树种和2个针叶树种(共8个树种)的叶和吸收根持续2a多的分解。结果发现,分解速率k(a~(-1),负指数模型)在8个树种整体分析时具有正相关关系(P0.05),在相同气候带或植物生活型水平上是否相关,受叶的分解环境及吸收根类型的影响;N剩余量整体上并不相关,亚热带树种的叶和细根根枝的N剩余量在分解1a后高度显著正相关,温带树种的叶和1级根的N剩余量在分解2a后显著高度正相关。本研究中,根-叶分解过程是否受控于相同或相关的凋落物性质是决定根-叶分解是否相关的重要原因,其中分解速率与酸溶组分正相关、与酸不溶组分负相关。比较已有研究,总结发现,根-叶分解关系受物种影响较大,暗示气候变化导致物种组成的改变将极大影响地上-地下关系,也因此影响生态系统C循环。  相似文献   

9.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

10.
Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.  相似文献   

11.
12.
13.
Antioxidant enzymes protect cells against oxidative stress and are associated with stress tolerance and longevity. In animals, variation in their activities has been shown to relate to species ecology, but in plants, comparative studies with wild species are rare. We investigated activities of five antioxidant enzymes – ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) – in roots of four perennial graminoid wetland species over a growing season to find out whether differences in root turnover or habitat preferences would be associated with variation in seasonal patterns of antioxidant enzyme activities. The investigated species differ in their root turnover strategies (fine roots senesce in the fall or fine roots survive the winter) and habitat preferences (nutrient‐poor vs. productive wetlands). Roots were collected both in the field and from garden‐grown plants. Antioxidant enzyme activities were higher and lipid peroxidation rates lower in species with annual root systems, and for species of the nutrient‐poor wetland, compared with perennial roots and species of productive wetlands, respectively. There was variation in the activities of individual antioxidant enzymes, but discriminant analyses with all enzymes revealed a clear picture, indicating consistent associations of antioxidant enzyme activities with the type of root turnover strategy and with the preferred habitat. We conclude that antioxidant enzyme activities in plant roots are associated with the species' ecological strategies and can be used as traits for the characterization of the species' position along plant economics spectrum.  相似文献   

14.
Here, we tested hypothesized relationships among leaf and fine root traits of grass, forb, legume, and woody plant species of a savannah community. CO2 exchange rates, structural traits, chemistry, and longevity were measured in tissues of 39 species grown in long-term monocultures. Across species, respiration rates of leaves and fine roots exhibited a common regression relationship with tissue nitrogen (N) concentration, although legumes had lower rates at comparable N concentrations. Respiration rates and N concentration declined with increasing longevity of leaves and roots. Species rankings of leaf and fine-root N and longevity were correlated, but not specific leaf area and specific root length. The C3 and C4 grasses had lower N concentrations than forbs and legumes, but higher photosynthesis rates across a similar range of leaf N. Despite contrasting photosynthetic pathways and N2-fixing ability among these species, concordance in above- and below-ground traits was evident in comparable rankings in leaf and root longevity, N and respiration rates, which is evidence of a common leaf and root trait syndrome linking traits to effects on plant and ecosystem processes.  相似文献   

15.
《植物生态学报》2017,41(10):1041
Aims Fine roots are the principal parts for plant nutrients acquisition and play an important role in the underground ecosystem. Increased nitrogen (N) deposition has changed the soil environment and thus has a potential influence on fine roots. The purpose of this study is to reveal the effect of N deposition on biomass, lifespan and morphology of fine root.Methods A field N addition experiment was conducted in a secondary broad-leaved forest in subtropical China from May 2013 to September 2015. Three levels of N treatments: CK (no N added), LN (5 g·m-2·a-1), and HN (15 g·m-2·a-1) were applied monthly. Responses of fine root biomass, lifespan, and morphology of Castanopsis platyacantha to N addition were analyzed by using a minirhizotron image system from April 2014 to September 2015. Surface soil sample (0-10 cm) was collected in November 2014 and soil pH value, and concentrations of NH4+-N and NO3--N were measured.Important findings The biomass and average lifespan of the fine roots of C. platyacantha were 128.30 g·m-3 and 113-186 days, respectively, in 0-45 cm soil layer. Nitrogen addition had no significant effect on either fine root biomass or lifespan in 0-45 cm soil layer. However, LN treatment significantly decreased C. platyacantha root superficial area in 0-15 cm soil layer. HN treatment significantly decreased soil pH value. Our study indicated that short-term N addition influences soil inorganic N concentration and thus decreased pH value in surface soil, and thereafter affect fine root morphology. Short-term N addition, however, did not affect the fine root biomass, lifespan and morphology in subsoil.  相似文献   

16.
Plants vary widely in how common or rare they are, but whether commonness of species is associated with functional traits is still debated. This might partly be because commonness can be measured at different spatial scales, and because most studies focus solely on aboveground functional traits. We measured five root traits and seed mass on 241 central European grassland species, and extracted their specific leaf area, height, mycorrhizal status and bud-bank size from databases. Then we tested if trait values are associated with commonness at seven spatial scales, ranging from abundance in 16-m2 grassland plots, via regional and European-wide occurrence frequencies, to worldwide naturalization success. At every spatial scale, commonness was associated with at least three traits. The traits explained the greatest proportions of variance for abundance in grassland plots (42%) and naturalization success (41%) and the least for occurrence frequencies in Europe and the Mediterranean (2%). Low root tissue density characterized common species at every scale, whereas other traits showed directional changes depending on the scale. We also found that many of the effects had significant non-linear effects, in most cases with the highest commonness-metric value at intermediate trait values. Across scales, belowground traits explained overall more variance in species commonness (19.4%) than aboveground traits (12.6%). The changes we found in the relationships between traits and commonness, when going from one spatial scale to another, could at least partly explain the maintenance of trait variation in nature. Most importantly, our study shows that within grasslands, belowground traits are at least as important as aboveground traits for species commonness. Therefore, belowground traits should be more frequently considered in studies on plant functional ecology.  相似文献   

17.
基于4月底到9月底东北地区玉米农田土壤呼吸作用全生长季的观测,阐明了土壤呼吸作用的空间异质性特征,综合分析了水热因子、土壤性质、根系生物量及其测定位置对土壤呼吸作用空间异质性的影响,并对生长季中根系呼吸作用占土壤呼吸作用的比例进行了估算。结果表明,在植株尺度上,土壤呼吸作用存在着明显的空间异质性,较高的土壤呼吸速率通常出现在靠近玉米植株的地方。根系生物量的分布格局是影响土壤呼吸作用空间异质性的关键因素。在空间尺度上,土壤呼吸作用与根系生物量呈显著的线性关系,而土壤湿度、土壤有机质、全氮和碳氮比对土壤呼吸作用空间异质性的影响并不显著。通过建立土壤呼吸作用与玉米根系生物量的回归方程,对根系呼吸作用占土壤呼吸作用的比例进行了间接估算。玉米生长季中,根系呼吸作用占土壤呼吸作用的比例在43.1%~63.6%之间波动,均值为54.5%。  相似文献   

18.
研究川西亚热带次生常绿阔叶林优势树种扁刺栲1~5级细根形态和化学特征,及其对氮添加的响应.结果表明: 随根序等级的增加,扁刺栲根直径、根组织密度、K含量增加,而比根长、比表面积及N、P、Mg含量降低.氮添加显著增加了扁刺栲细根N含量,降低了Mg含量和C/N,使细根Ca含量呈下降趋势,对根序C、P、K、Na、Al、Mn、Fe含量无显著影响.氮添加未显著影响扁刺栲细根直径、比根长、比表面积和根组织密度.在所有处理中,细根P含量均与各形态特征呈显著线性回归关系.氮添加处理下,细根Mg含量与形态特征之间的线性关系由不显著变为显著,而细根N含量与形态特征之间的线性关系由显著变为不显著.氮添加会影响根系营养元素含量,并增强植物对P和Mg的需求.  相似文献   

19.
20.
The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11-54 Μmol m-2 s-1 was found in August 2004 and the lowest soil respiration rate of 4.99 Μmol m-2 s-1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m-2 in August 2004 to 102 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 Μmol m-2 s-1) and lowest in October 2004 (1.7 Μmol m-2 s-1). Microbial respiration rate was highest in August 2004 (5.8 Μmol m-2 s-1) and lowest in April 2005 (2.59 Μmol m-2 s-1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号