首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stochastic and potentiometric microsensors based on porphyrins and polymeric surfactants such as polysodium N‐undecanoyl‐ l ‐leucylvanilate and polysodium 相似文献   

2.
A potentiometric, enantioselective membrane electrode based on graphite paste (graphite powder and paraffin oil) has been constructed. The graphite paste is impregnated with a 10−3 mol/L 2‐hydroxy‐3‐trimethylammoniopropyl‐β‐cyclodextrin (as chloride salt) solution. The potentiometric, enantioselective membrane electrode can be used reliably for enantiopurity tests of S‐perindopril using a chronopotentiometric (zero current) technique, in the 10−5–10−2 mol/L concentration range (detection limit 5 × 10−6 mol/L), with an average recovery of 99.58% (RSD = 0.33%). The enantioselectivity was determined over R‐perindopril and d ‐proline. The response characteristics of the enantioselective, potentiometric membrane electrode were also determined for R‐perindopril. It was shown that l ‐proline is the main interfering compound. The surface of the electrode can be regenerated simply by polishing, obtaining a fresh surface ready to be used in a new assay. Chirality 11:631–634, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
In the past years, enantioanalysis became very important for clinical analysis; biomarkers/substances of biomedical importance with chiral structure should be analyzed and their presence correlated with the specific disorder. Therefore, we developed a method for the assay of l ‐ and d ‐glucose, based on molecular recognition of l ‐ and d ‐glucose. While for d ‐glucose there are many methods to assess its quantity, the l ‐enantiomer is not routinely detected by standard methods. Two stochastic microsensors based on the immobilization of Copper(II)phthalocyanine and Ni(II)phthalocyanine, in natural diamond powder, were proposed for the enantioanalysis of glucose. The proposed methods proved to have high sensitivities and were able to be used for determination of concentrations as low as 2.5 pg mL?1 for d ‐glucose and as low as 2.5 fg mL?1 for l ‐glucose. The enatioanalysis was performed with good results in whole blood samples collected from diabetic patients.  相似文献   

4.
Herein, a new recipe is introduced for the preparation of hydrogen phosphate ion‐imprinted polymer nanoparticles (nano‐IIP) in acetonitrile/water (63.5:36.5) using phosphoric acid as the template. The nano‐IIP obtained was used as the recognition element of a carbon paste potentiometric sensor. The IIP electrode showed a Nernstian response to hydrogen phosphate anion; whereas, the non‐imprinted polymer (NIP)‐based electrode had no considerable sensitivity to the anion. The presence of both methacrylic acid and vinyl pyridine in the IIP structure, as well as optimization of the functional monomers‐template proportion, was found to be important to observe the sensing capability of the IIP electrode. The nano‐IIP electrode showed a dynamic linear range of 1 × 10?5‐1 × 10?1 mol L‐1, Nernstian slope of 30.6 ± (0.5) mV decade ?1, response time of 25 seconds, and detection limit of 4.0 × 10?6 mol L?1. The utility of the electrodes was checked by potentiometric titration of hydrogen phosphate with La3+ solution.  相似文献   

5.
N‐carbamoyl‐amino‐acid amidohydrolase (also known as N‐carbamoylase) is the stereospecific enzyme responsible for the chirality of the D ‐ or L ‐amino acid obtained in the “Hydantoinase Process.” This process is based on the dynamic kinetic resolution of D ,L ‐5‐monosubstituted hydantoins. In this work, we have demonstrated the capability of a recombinant L ‐N‐carbamoylase from the thermophilic bacterium Geobacillus stearothermophilus CECT43 (BsLcar) to hydrolyze N‐acetyl and N‐formyl‐L ‐amino acids as well as the known N‐carbamoyl‐L ‐amino acids, thus proving its substrate promiscuity. BsLcar showed faster hydrolysis for N‐formyl‐L ‐amino acids than for N‐carbamoyl and N‐acetyl‐L ‐derivatives, with a catalytic efficiency (kcat/Km) of 8.58 × 105, 1.83 × 104, and 1.78 × 103 (s?1 M?1), respectively, for the three precursors of L ‐methionine. Optimum reaction conditions for BsLcar, using the three N‐substituted‐L ‐methionine substrates, were 65°C and pH 7.5. In all three cases, the metal ions Co2+, Mn2+, and Ni2+ greatly enhanced BsLcar activity, whereas metal‐chelating agents inhibited it, showing that BsLcar is a metalloenzyme. The Co2+‐dependent activity profile of the enzyme showed no detectable inhibition at high metal ion concentrations. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
A highly sensitive flow‐injection chemiluminescence (FIA‐CL) method based on the CdTe nanocrystals and potassium permanganate chemiluminescence system was developed for the determination of l ‐ascorbic acid. It was found that sodium hexametaphosphate (SP), as an enhancer, could increase the chemiluminescence (CL) emission from the redox reaction of CdTe quantum dots with potassium permanganate in near‐neutral pH conditions. l ‐Ascorbic acid is suggested as a sensitive enhancer for use in the above energy‐transfer excitation process. Under optimal conditions, the calibration graph of emission intensity against logarithmic l ‐ascorbic acid concentration was linear in the range 1.0 × 10?9–5.0 × 10?6 mol/L, with a correlation coefficient of 0.9969 and relative standard deviation (RSD) of 2.3% (n = 7) at 5.0 × 10?7 mol/L. The method was successfully used to determine l ‐ascorbic acid in vitamin C tablets. The possible mechanism of the chemiluminescence in the system is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
d ‐lactic acid is of great interest because of increasing demand for biobased poly‐lactic acid (PLA). Blending poly‐l ‐lactic acid with poly‐d ‐lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d ‐lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l ‐lactate‐deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1‐pCU‐PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d ‐lactic acid yield and productivity. d ‐lactic acid (27.3 g L?1) and productivity (0.75 g L?1 h?1) was obtained from corn stover and d ‐lactic acid (22.0 g L?1) and productivity (0.65 g L?1 h?1) was obtained from sorghum stalks using ΔldhL1‐pCU‐PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d ‐lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d ‐lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271–278, 2016  相似文献   

8.
A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The ( d ‐camphorsulfonic acid)‐ and (HCl)‐PANI‐based electrodes exhibited significantly different electrochemical performances in d ‐ and l ‐Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI‐based electrodes were measured within d ‐ and l ‐Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C+]poly1/[C+]poly2 was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C+]poly1/[C+]poly2 can be increased with increasing concentrations of (1S)‐(+)‐ and (1R)‐(?)‐10‐camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Chirality 25:39‐42, 2013.© 2012 Wiley Periodicals, Inc.  相似文献   

9.
Polyaniline/carbon nanotubes composite (PANI‐CNT) electrochemically deposited onto indium‐tin‐oxide (ITO) coated glass plate has been utilized for Neisseria gonorrhoeae detection by immobilizing 5′‐amino‐labeled Neisseria gonorrhoeae probe (aDNA) using glutaraldehyde as a cross‐linker. PANI‐CNT/ITO and aDNA‐Glu‐PANI‐CNT/ITO electrodes have been characterized using scanning electron microscopy (SEM), Fourier Transform Infrared (FT‐IR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This bioelectrode can be used to detect N. gonorrhoeae using methylene blue (MB) as redox indicator with response time of 60 s and stability of about 75 days when stored under refrigerated conditions. DPV studies reveal that this bioelectrode can detect complementary DNA concentration from 1 × 10?6 M to 1 × 10?17 M with detection limit of 1.2 × 10?17 M. Further, this bioelectrode (aDNA‐Glu‐PANI‐CNT/ITO) exhibits specificity toward N. gonorrhoeae species and shows negative response with non‐Neisseria gonorrhoeae Neisseria species (NgNS) and other gram negative bacteria (GNB). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Optically pure d ‐lactate production has received much attention for its critical role in high‐performance polylactic acid production. However, the current technology can hardly meet the comprehensive demand of industrialization on final titer, productivity, optical purity, and raw material costs. Here, an efficient d ‐lactate producer strain, Sporolactobacillus terrae (S. terrae) HKM‐1, is isolated for d ‐lactate production. The strain HKM‐1 shows extremely high d ‐lactate fermentative capability by using peanut meal, soybean meal, or corn steep liquor powder as a sole nitrogen source; the final titers (205.7 g L?1, 218.9 g L?1, and 193.9 g L?1, respectively) and productivities (5.56 g L?1 h?1, 5.34 g L?1 h?1, and 3.73 g L?1 h?1, respectively) of d ‐lactate reached the highest level ever reported. A comparative genomic analysis between S. terrae HKM‐1 and previously reported d ‐lactate high‐producing Sporolactobacillus inulinus (S. inulinus) CASD is conducted. The results show that many unrelated genetic features may contribute to the superior performance in d ‐lactate production of S. terrae HKM‐1. This d ‐lactate producer HKM‐1, along with its fermentation process, is promising for sustainable d ‐lactate production by using agro‐industrial wastes.  相似文献   

11.
A study was undertaken to examine the effect of different amounts of dietary lysine (13 and 21 g kg?1 diet), lipid (80 and 160 g kg?1 diet) and L ‐carnitine (0.2 and 1.0 g kg?1 diet) on growth performance, proximate composition and amino acid metabolism of the African catfish (Clarias gariepinus). Juvenile African catfish (23 ± 1.5 g/fish) were stocked into 70‐L aquaria (16 aquaria, 28 fish/aquarium) connected to a recirculation system during a maximum period of 74 days. All groups were fed at a level of 24 g kg?0.8 day?1 in an experiment run at pair feeding. Animals receiving 1.0 g carnitine accumulated up to six times more carnitine in their tissues than animals receiving 0.2 g (P < 0.05). Acyl‐carnitine and free L ‐carnitine levels increased in the whole body and in tissues. Dietary L ‐carnitine supplements increased protein‐to‐fat ratios in the body, but did not affect growth rate. Protein‐to‐fat ratios were only affected when the biosynthesis capacity of L ‐carnitine was restricted due to low lysine levels and when there was a shortage of dietary fat. When lysine was offered at 21 g kg?1 feed, dietary L ‐carnitine supplements did not affect the amino acid concentrations of body tissues. Dietary L ‐carnitine supplements raised the concentration of glutamic acid > aspartic acid > glycine > alanine > arginine > serine > threonine in skeletal muscle tissue (P < 0.05). Total amino acid concentration in muscle and liver tissues (dry‐matter basis) increased from 506 to 564 and from 138 to 166 mg g?1, respectively, when diets were offered with high L ‐carnitine, low lysine and low fat levels. These data suggest that dietary L ‐carnitine supplementation may increase fatty acid oxidation and possibly decrease amino acid combustion for energy.  相似文献   

12.
Campylobacter jejuni, a major food‐borne intestinal pathogen, preferentially utilizes a few specific amino acids and some organic acids such as pyruvate and l ‐ and d ‐lactate as carbon sources, which may be important for growth in the avian and mammalian gut. Here, we identify the enzymatic basis for C. jejuni growth on l ‐lactate. Despite the presence of an annotated gene for a fermentative lactate dehydrogenase (cj1167), no evidence for lactate excretion could be obtained in C. jejuni NCTC 11168, and inactivation of the cj1167 gene did not affect growth on lactate as carbon source. Instead, l ‐lactate utilization in C. jejuni NCTC 11168 was found to proceed via two novel NAD‐independent l ‐LDHs; a non‐flavin iron–sulfur containing three subunit membrane‐associated enzyme (Cj0075c‐73c), and a flavin and iron–sulfur containing membrane‐associated oxidoreductase (Cj1585c). Both enzymes contribute to growth on l ‐lactate, as single mutants in each system grew as well as wild‐type on this substrate, while a cj0075c cj1585c double mutant showed no l ‐lactate oxidase activity and did not utilize or grow on l ‐lactate; d ‐lactate‐dependent growth was unaffected. Orthologues of Cj0075c‐73c (LldEFG/LutABC) and Cj1585c (Dld‐II) were recently shown to represent two novel families of l ‐ and d ‐lactate oxidases; this is the first report of a bacterium where both enzymes are involved in l ‐lactate utilization only. The cj0075c‐73c genes are located directly downstream of a putative lactate transporter gene (cj0076c, lctP), which was also shown to be specific for l ‐lactate. The avian and mammalian gut environment contains dense populations of obligate anaerobes that excrete lactate; our data indicate that C. jejuni is well equipped to use l ‐ and d ‐lactate as both electron‐donor and carbon source.  相似文献   

13.
Aims: To test degradation of malic acid content in wine by immobilized Issatchenkia orientalis KMBL 5774 cells recently isolated from Korean wine pomace as a malic acid‐degrading yeast. Methods and Results: I. orientalis KMBL 5774 cells were immobilized using a mixture of oriental oak (Quercus variabilis) charcoal with sodium alginate. When the immobilized yeast cells were observed on a scanning electron microscope, cells were efficiently immobilized on the surface area of the charcoal. A Korean wine containing a high level of malic acid was treated with the immobilized yeast cells. The HPLC analysis of the malic acid content in the treated wine showed the malic acid content was reduced to 0·75 mg ml?1 after treatment from the original content of 8·96 mg ml?1, representing 91·6% of the malic acid was degraded during the treatment. Conclusions: The immobilization of the malic acid‐degrading yeasts with oriental oak charcoal and sodium alginate is useful for degradation of malic acid in wines containing a high level of malic acid with no significant increase in other acids. Significance and Impact of the study: Malic acid is sometimes detrimental to the quality of wines when present at high concentrations in some varieties. The immobilized I. orientalis KMBL5774 cells appear to be a promising candidate in view of developing biotechnological methods for reduction of malic acid contents in wine.  相似文献   

14.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The EF‐hand motif (helix–loop–helix) is a Ca2+‐binding domain that is common among many intracellular Ca2+‐binding proteins. We applied Fourier‐transform infrared spectroscopy to study the synthetic peptide analogues of site III of rabbit skeletal muscle troponin C (helix E–loop–helix F). The 17‐residue peptides corresponding to loop–helix F (DRDADGYIDAEELAEIF), where one residue is substituted by the D ‐type amino acid, were investigated to disturb the α‐helical conformation of helix F systematically. These D ‐type‐substituted peptides showed no band at about 1555 cm?1 even in the Ca2+‐loaded state although the native peptide (L ‐type only) showed a band at about 1555 cm?1 in the Ca2+‐loaded state, which is assigned to the side‐chain COO? group of Glu at the 12th position, serving as the ligand for Ca2+ in the bidentate coordination mode. Therefore, helix F is vital to the interaction between the Ca2+ and the side‐chain COO? group of Glu at the 12th position. Implications of the COO? antisymmetric stretch and the amide‐I′ of the synthetic peptide analogues of the Ca2+‐binding sites are discussed. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 342–347, 2013.  相似文献   

16.
Aims: The objective of this study is to optimize the levels of carbon and nitrogen sources of the medium in shake flask experiments and evaluate the effect of pH and dissolved oxygen (DO) on the production of l ‐asparaginase from a newly isolated Serratia marcescens SK‐07 in a batch bioreactor. Methods and Results: Central composite rotatable design (CCRD) was applied to optimize the levels of carbon and nitrogen sources of the medium in shake flask experiments. The optimal levels of l ‐asparagine, glucose, yeast extract and peptone were found to be 4·93, 3·81, 3·65 and 1·47 g l?1, respectively, and maximal l ‐asparaginase production of 25·02 U mg?1 was obtained under these conditions. Among the carbon sources tested, l ‐asparagine was identified to be the most favourable carbon source for enhanced production of l ‐asparaginase. The maximum l ‐asparaginase production of 29·89 U mg?1 was achieved in a batch bioreactor at initial pH of 6·5 (uncontrolled) and DO level of 40% in the culture. Conclusions: We have isolated, screened and identified the potential micro‐organism, S. marcescens, for the production of l ‐asparaginase. An overall 5·55‐fold increase in the production was achieved under optimal levels of carbon and nitrogen sources, DO level and at initial pH of 6·5 (uncontrolled). Significance and Impact of the Study: The experiments illustrate the importance of statistical method for optimization of carbon and nitrogen sources and study the effect of physical process parameters on the production of l ‐asparaginase in shake flask and bioreactor, respectively. This study would be helpful for bioprocess development of bacterial l ‐asparaginase production.  相似文献   

17.
18.
It has been previously debated whether CO2 would depolarize the guard cell plasma membrane through malate‐mediated activation of the anion channel. Moreover, it has been assessed that the CO2 signal would be transduced via cytosolic free Ca2 + . In the present study, the CO2 sensing and transducing processes were reinvestigated in Commelina communis (L.) mainly by studying how L ‐(–)‐malic acid and Ca2 + flux modulators affected different CO2 stomatal responses. L ‐(–)‐malic acid (1 m M ) inhibited by about 50% both CO2‐induced stomatal closing and CO2‐triggered inhibition of the stomatal opening response to the auxin indolyl‐3‐butyric acid. Stomatal closing in response to atmospheric CO2 was strongly inhibited by the 1,4 dihydropyridines SDZ‐202 791 R(–) (SDZ (–)) and nifedipine, and this inhibition was attenuated by the 1,4 dihydropyridines SDZ‐202 791 S( + ) and S‐(–)‐BAY K8644. Suboptimal concentrations of the slow anion channel blockers 5‐nitro‐2,3‐phenylpropyllamine benzoic acid and anthracene‐9‐carboxylic acid increased the 50% inhibition of the CO2 closing response by the Ca2 + flux modulators SDZ (–) and 1,2‐bis(o‐aminophenoxy)ethane‐N,N,NN ′ ‐tetraacetic acid in a stronger manner than an additive one. Together, these results support the view that CO2 is sensed through reducing proton extrusion. Moreover, they might suggest that the CO2 signal is transduced through Ca2 + signalling arising from depolarization‐mediated activation of a putative plasma membrane voltage‐gated L‐type Ca2 + channel and for which the plasma membrane slow anion channel is a potential target.  相似文献   

19.
The ratio of two biosynthetic pathways was estimated, the C5 and Shemin pathways, to δ‐aminolevulinic acid (ALA, a biosynthetic intermediate of tetrapyrrole) from the 13C‐enrichment ratios (13C‐ER) at the carbon atoms of chl a (after conversion to methyl pheophorbide a) biosynthesized by Euglena gracilis G. A. Klebs when l ‐[3‐13C]alanine was used as a carbon source. On the basis of these estimations, we confirmed that ALA was efficiently biosynthesized via both the C5 and Shemin pathways in the plastids of E. gracilis, and we determined that the ratio of ALA biosynthesis via the Shemin pathway was increased in the ratio of 14%–67%, compared with that in our previous d ‐[1‐13C]glucose feeding experiment ( Iida et al. 2002 ). This carbon source dependence of the contributions of the two biosynthetic pathways might be related to activation of gluconeogenesis by the amino acid substrate. The methoxy carbon of the methoxycarbonyl group at C‐132 of chl a was labeled with the 13C‐carbon of l ‐[methyl13C]methionine derived from l ‐[3‐13C]alanine via [2‐13C]acetyl coenzyme A (CoA), through the atypical tricarboxylic acid (TCA) cycle, gluconeogenesis, and l‐ [3‐13C]serine. The phytyl moiety of chl a was also labeled on C‐P2, C‐P31, C‐P4, C‐P6, C‐P71, C‐P8, C‐P10, C‐P111, C‐P12, C‐P14, C‐P151, and C‐P16 from 13C‐isoprene (2‐[1,2‐methyl,3‐13C3]methyl‐1,3‐butadiene) generated from l ‐[3‐13C]alanine via [2‐13C]acetyl CoA.  相似文献   

20.
A solution of optically pure kynurenine (KYN), i.e., D ‐KYN or L ‐KYN, was administered intravenously to male Sprague‐Dawley rats (10 mg kg?1 ml?1). The time‐course of changes in the concentrations of urinary monoamines and their metabolites such as 5‐hydroxytryptamine (5‐HT), 5‐hydroxyindole acetic acid (5‐HIAA), dopamine, and 3‐methoxytyramine were investigated by reversed‐phase high‐performance liquid chromatography with electrochemical detection after precolumn derivatization with (2R)‐2,5‐dioxopyrrolidin‐1‐yl‐2,5,7,8‐tetramethyl‐6‐(tetrahydro‐2H‐pyran‐2‐yloxy)chroman‐2‐carboxylate (NPCA). We observed a stereoselective difference in the effects of the KYN enantiomers. Only D ‐KYN, not L ‐KYN, caused a significant increase in urinary 5‐HT levels within 30 min after its administration. With regard to the metabolites, urinary 3‐MT level was increased by D ‐KYN administration. On the other hand, no significant change in the DA level was observed after administration of either D ‐KYN or L ‐KYN. These results suggest that D ‐KYN could affect the activity of neuroactive amines, especially 5‐HT, in vivo. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号