首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature on the conformation of a histone (H3.1) is studied by a coarse-grained Monte Carlo simulation based on three knowledge-based contact potentials (MJ, BT, BFKV). Despite unique energy and mobility profiles of its residues, the histone H3.1 undergoes a systematic (possibly continuous) structural transition from a random coil to a globular conformation on reducing the temperature. The range over which such a systematic response in variation of the radius of gyration (Rg) with the temperature (T) occurs, however, depends on the potential, i.e. ΔTMJ ≈ 0.013–0.020, ΔTBT ≈ 0.018–0.026, and ΔTBFKV ≈ 0.006–0.013 (in reduced unit). Unlike MJ and BT potentials, results from the BFKV potential show an anomaly where the magnitude of Rg decreases on raising the temperature in a range ΔTA ≈ 0.015–0.018 before reaching its steady-state random coil configuration. Scaling of the structure factor, S(q) ∝ q−1/ν, with the wave vector, q = 2π/λ, and the wavelength, λ, reveals a systematic change in the effective dimension (De∼1/ν) of the histone with all potentials (MJ, BT, BFKV): De∼3 in the globular structure with De∼2 for the random coil. Reproducibility of the general yet unique (monotonic) structural transition of the protein H3.1 with the temperature (in contrast to non-monotonic structural response of a similar but different protein H2AX) with three interaction sets shows that the knowledge-based contact potential is viable tool to investigate structural response of proteins. Caution should be exercise with the quantitative comparisons due to differences in transition regimes with these interactions.  相似文献   

2.
Individual differences in the visual gamma (30–100Hz) response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition) have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency) are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient) varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10–25Hz), but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes.  相似文献   

3.

Purpose

Unipolar (UE) and bipolar electrograms (BE) are utilized to identify arrhythmogenic substrate. We quantified the effect of increasing distance from the source of propagation on local electrogram amplitude; and determined if transmural electrophysiological gradients exist with respect to propagation and stimulation depth.

Methods

Mapping was performed on 5 sheep. Deployment of >50 quadripolar transmural needles in the LV were located in Cartesian space using Ensite. Contact electrograms from all needles were recorded during multisite bipolar pacing from epicardial then endocardial electrodes. Analysis was performed to determine stimulus distance to local activation time, peak negative amplitude (V-P), and peak-peak amplitude (VP-P) for (1) unfiltered UE, and (2) unfiltered and 30 Hz high-pass filtered BEs. Each sheep was analysed using repeated ANOVA.

Results

Increasing distance from the pacing sites led to significant (p<0.01) attenuation of UEs (V-P = 7.0±0.5%; VP-P = 5.4±0.3% per cm). Attenuation of BE with distance was insignificant (Vp-p unfiltered  = 2.2±0.5%; filtered  = 1.7±1.4% per cm). Independent of pacing depth, significant (p<0.01) transmural electrophysiological gradients were observed, with highest amplitude occurring at epicardial layers for UE and endocardial layers for BE. Furthermore, during pacing, propagation was earlier at the epicardium than endocardial layer by 1.6±2.0 ms (UE) and 1.4±2.8 ms (BE) (all p>0.01) during endocardial stimulation, and 2.3±2.4 ms (UE) and 1.8±3.7 ms (BE) during epicardal stimulation (all p<0.01).

Conclusions

Electrogram amplitude is inversely proportional to propagation distance for unipolar modalities only, which affected V-P>VP-P. Conduction propagates preferentially via the epicardium during stimulation and is believed to contribute to a transmural amplitude gradient.  相似文献   

4.
The ability of pheromone receptor cells of male Antheraea polyphemus (Saturniidae) to resolve stimulus pulses was determined at different temperatures (8°, 18°, 28°C). The cells were stimulated by repeated 20-ms puffs of the pheromone components (E, Z)-6, 11-hexadecadienyl acetate and (E, Z)-6,11-hexadecadienal. At higher temperatures, higher frequencies of stimulus pulses were resolved by the nerve-impulse response: about 1.25 pulses per second at 8°C, 2.5 pulses/s at 18°C and 5 pulses/s at 28°C. The decreased ability of receptor cells to resolve stimulus pulses at low temperatures may reduce the male moth's chance of reaching the pheromone source. The peak nerve-impulse frequency increased whereas the duration of nerve-impulse responses to single stimulus pulses decreased at higher temperatures. At a given temperature and stimulus intensity the peak nerveimpulse frequency decreased with shorter intervals between the stimulus pulses, but the duration of the responses remained almost constant. The time needed for recovery from adaptation caused by a single stimulus pulse was longer at lower temperatures. The aldehyde receptor cell recovered more quickly than the acetate cell. At low stimulus concentration, the resolution ability of the acetate cell was strongly decreased, whereas in the aldehyde cell it was only slightly impaired.  相似文献   

5.
Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural responses in the medio-lateral (ML) direction, but its effect in improving balance function in both the ML and anterior-posterior (AP) directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0–30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45) subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100–500 μA for all the three directions, exhibiting stochastic resonance (SR) phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold) was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson’s disease or in astronauts returning from long-duration space flight.  相似文献   

6.
Eleven germplasms of faba bean seeds from four agroclimatic regions of Bihar, India, have been investigated to estimate their nutritional (soluble protein, free amino acids, starch, reducing and non reducing sugar, total soluble sugar) and antinutritional (total extractable phenol and condensed tannin/proanthocyanidin) parameters. These parameters were found in varying concentration in all genotypes studied. The highest concentration of total extractable phenol and proanthocyanidin (condensed tannin) (2.56 and 1.59 % leucocyanidin equivalents respectively on dry matter basis) were found in Samastipur while the lowest from Patna (0.95 and 0.426 % leucocyanidin equivalent on dry matter basis). The different nutritional parameters were also found to be in variable concentration among different germplasms viz. total soluble protein ≈ 20–32 %, free amino acids ≈ 188–348 mg/100 g, starch ≈ 27–33 %, reducing sugars ≈ 85–188 mg/100 g, non reducing sugars ≈ 0.7–1.7 % and total soluble sugars ≈ 0.8–1.9 %.  相似文献   

7.
Mechanisms of the "enhancing" evoked potential arising in the visual cortex in response to repeated stimulation at intervals of 100–150 msec were investigated on unanesthetized rabbits. Such intervals correspond to the phase of postinhibitory activation caused by the first (conditioning) stimulus. It is shown that the enhancing response lasts slightly longer than the primary response to a single stimulus and develops upon stimulation of the optic nerve and subcortical white substance under the point of derivation. The enhancing response is accompanied by a high-amplitude excitatory postsynaptic potential in cortical neurons and by a burst of impulse activity. Hence it can be concluded that it is generated by excitatory synapses of cortical neurons. Characteristic features of the enhancing response are the relation between the duration of the response and its amplitude (the response is shorter, the higher its amplitude) and the weak effect of the intensity of the stimulus on the amplitude of the response. An analysis of the possible mechanisms of enhancement of the response when the stimulus evoking it coincides with the phase of postinhibitory activation leads to the suggestion that this response is generated by a recurrent excitatory intracortical system. This suggestion makes it possible to explain the ability of the response to be enhanced in the presence of postinhibitory activity and some other properties of it.A. N. Severtsov Institute of Evolutionary Animal Morphology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 64–72, January–February, 1970.  相似文献   

8.
Sodium Flux in Necturus Proximal Tubule under Voltage Clamp   总被引:6,自引:4,他引:2       下载免费PDF全文
Na transport and electrical properties of Necturus renal proximal tubules were analyzed, in vivo, by a voltage clamp method which utilizes an axial electrode in the tubule lumen for passage of current and simultaneous determination of net fluid (or Na) flux by the split droplet method. When the average spontaneous transepithelial potential difference of –8 mv (lumen negative) was reduced to zero by current passage, net Na flux doubled from a mean of 107 to 227 pmoles/cm2 per sec. The relationship between flux and potential over the range –25 to +10 mv was nonlinear, with flux equilibrium at –15 mv and droplet expansion at more negative values. Calculated Na permeability at flux equilibrium was 7.0 x 10–6 cm/sec. Voltage transients, similar to those caused by intraepithelial unstirred layers, were observed at the end of clamping periods. Tubular electrical resistance measured by brief square or triangle wave pulses (<100 msec) averaged 43 ohm cm2. The epithelial current-voltage relationship was linear over the range –100 to +100 mv, but displayed marked hysteresis during low frequency (<0.04 Hz) triangle wave clamps. The low transepithelial resistance and large opposing unidirectional ion fluxes suggest that passive ionic movements occur across extracellular shunt pathways, while the voltage transients and current-voltage hysteresis are consistent with the development of a local osmotic gradient within epithelium.  相似文献   

9.
A new dissection procedure for preparing Myxicola giant axons for observation under voltage clamp is described. Preparation time is generally 40–45 min. 65–70% of the preparations attempted may be brought through the entire procedure, including insertion of the long internal electrode, and support an initial action potential amplitude of 100 mv or greater. Mean values for axon diameter, resting membrane potential, action potential amplitude, maximum peak inward transient current, and resting membrane resistance are 560 µ, —66.5 mv, 112 mv, 0.87 ma/cm2 and 1.22 KΩ cm 2 respectively. Cut branches do not seem to be a problem in this preparation. Behavior under voltage clamp is reasonably stable over several hours. Reductions in maximum inward transient current of 10% and in steady-state current of 5–10% are expected in the absence of any particular treatment. Tetrodotoxin blocks the action potential and both the inward and outward transient current, but has no effect on either the resting membrane potential or the steady-state current. This selective action of tetrodotoxin on the transient current is taken as an indication that this current component is probably carried by Na.  相似文献   

10.
Stretching and releasing the femoral chordotonal organ caused by a movement of the tendon of the organ gives rise to a movement of the tibia. This reaction is called Kniesehnenreflex (knee-tendon-reflex). Its step response can be described in the following manner: After a certain reaction-time (at flexion 0.02–0.06 sec, at extension 0.06–0.2 sec) the tibia moves with a maximum speed between 150°/sec and 1000°/sec at extension and between 20°/sec and 450°/sec at flexion. The amplitude of the movement and the maximum speed of tibia movement are correlated. After reaching the extreme position the tibia returnes nearly to its starting-point with half lifes of 3–58 sec after a flexion and 7–232 sec after an extension. — The frequency response shows a strong decrease of the amplitude of the tibia at about 1 Hz. Above 2 Hz the amplitude is only a few degrees. The phase shift between stimulus and reaction increases with increasing frequency. Big individual differences are observed. A step stimulus, which is given in addition to a sinoidal stimulus causes a response at all frequencies. — Slow stretching and releasing the chordotonal organ with constant speeds causes movements of the tibia even at stimulus speeds of 0.002 mm/min. — It is discussed: the significance of the results for the theory of the control mechanism at walk, the stability of the control system in connection with the rocking-movements of the animal and the control of Flexibilitas cerea.  相似文献   

11.
The ATP dependence of the kinetics of Ca2+-dependent exocytosis after flash photolysis of caged Ca2+ was studied by capacitance measurements with submillisecond resolution in single synaptic terminals of retinal bipolar neurons. After control experiments verified that this combination of techniques is valid for the study of exocytosis in synaptic terminals, a comparison was made between the Ca2+ dependence of the rate of exocytosis in synaptic terminals internally dialyzed with MgATP, MgATP-γ-S, or no added Mg2+ or nucleotide. The Ca2+ threshold for release, the maximum rate of release, and the overall relationship between the rate of synaptic vesicle fusion and [Ca2+]i were found to be independent of MgATP. A decrease in the average rate at near-threshold [Ca2+]i was observed in terminals with MgATP-γ-S, but due to the small sample size is of unclear significance. The Ca2+ dependence of the delay between the elevation of [Ca2+]i and the beginning of the capacitance rise was also found to be independent of MgATP. In contrast, MgATP had a marked effect on the ability of terminals to respond to multiple stimuli. Terminals with MgATP typically exhibited a capacitance increase to a second stimulus that was >70% of the amplitude of the first response and to a third stimulus with a response amplitude that was >50% of the first, whereas terminals without MgATP responded to a second stimulus with a response <35% of the first and rarely responded to a third flash. These results suggest a major role for MgATP in preparing synaptic vesicles for fusion, but indicate that cytosolic MgATP may have little role in events downstream of calcium entry, provided that [Ca2+]i near release sites is elevated above ≈30 μM.  相似文献   

12.
The in vivo potency of antisense oligonucleotides (ASO) has been significantly increased by reducing their length to 8–15 nucleotides and by the incorporation of high affinity RNA binders such as 2′, 4′-bridged nucleic acids (also known as locked nucleic acid or LNA, and 2′,4′-constrained ethyl [cET]). We now report the development of a novel ASO design in which such short ASO monomers to one or more targets are co-synthesized as homo- or heterodimers or multimers via phosphodiester linkers that are stable in plasma, but cleaved inside cells, releasing the active ASO monomers. Compared to current ASOs, these multimers and multi-targeting oligonucleotides (MTOs) provide increased plasma protein binding and biodistribution to liver, and increased in vivo efficacy against single or multiple targets with a single construct. In vivo, MTOs synthesized in both RNase H-activating and steric-blocking oligonucleotide designs provide ≈4–5-fold increased potency and ≈2-fold increased efficacy, suggesting broad therapeutic applications.  相似文献   

13.
Contractile Activation in Frog Skeletal Muscle   总被引:3,自引:3,他引:0       下载免费PDF全文
Contractile activation was studied in frog single muscle fibers treated with tetrodotoxin to block action potentials. The membrane potential in a short segment of the fiber was controlled with a two-electrode voltage clamp, and the contractile response of superficial myofibrils in this segment was observed microscopically. The strength-duration relation for contractile activation was similar to that reported by Adrian, Chandler, and Hodgkin (1969); at 3.9°C, the contraction threshold was –44 mV for long depolarizing pulses (100-ms) and increased to +64 mV for 2-ms depolarizations. Hyperpolarizing postpulses shifted the threshold for 2-ms pulses to more positive values, and a similar, but smaller, effect was produced by hyperpolarizing prepulses. The decay of excitability following subthreshold pulses showed two apparently distinct components; at 3.9°C, excitability fell to 50% of its initial value within 4 ms, while the subsequent decline of excitability proceeded with a half-time of about 20 ms.  相似文献   

14.
The most important unpleasant sensation of electrochemotherapy is muscle contraction. One of the causes of this discomfort is electrochemotherapy in the low-frequency range (1 Hz). To resolve this problem, there are two solutions: first, increasing the repetition frequency of electric pulses above the tetanic frequency and, second, reducing the voltage amplitude. This study examines the antitumor effectiveness of treatment using low electric fields and high frequency in the presence and absence of chemotherapeutic agents. High-voltage amplitude electrochemotherapy was performed by eight pulses, at 1,000 V/cm, of 100-μs duration at 1-Hz and 5-kHz repetition frequency. In the low-voltage amplitude protocol, 4,000 pulses, of 100-μs duration at 5-kHz repetition frequency with 70, 100 and 150 V/cm were delivered to invasive ductal carcinoma tumors after intratumoral injection of bleomycin. Our data demonstrate significant differences in tumor volumes and the curability rate between mice treated by 70 V/cm compared to other groups. Electrochemotherapy, which is specified by a higher repetition frequency of electric pulses (5 kHz) and low voltage, inhibits tumor growth. This protocol has a comparable effect to 1-Hz pulse repetition electric pulses with high voltage. Based on these results, the 4,000 pulses of 70 V/cm with 5-kHz frequency are most effective. This protocol demonstrates inhibition of tumor growth without any need for drug administration.  相似文献   

15.
The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species'' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r2 = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or −15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140–150 dB re 1 µPa or −33 to −23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9–2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.  相似文献   

16.
During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50–150 V/cm) and higher repetition frequency (4–6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude.  相似文献   

17.
Summary Changing the temperature from 10–40 °C modifies the transmission at an established monosynaptic connection between the fast extensor tibiae (FETi) and flexor tibiae motor neurons in the metathoracic ganglion of the locustSchistocerca gregaria (Forskål). Striking changes occur to the shape of the spikes, to membrane resistance, to the synaptic delay, and to the evoked synaptic potentials.In the presynaptic FETi motor neuron, raising the temperature reduces the amplitude of an antidromic spike recorded in the soma by a factor of 10 (40 mV to 4 mV), reduces the time taken to reach peak amplitude by 5 (3.5 to 0.7 ms) and decreases the duration at half maximum amplitude by 0.5. The conduction velocity of the spike in the axon is increased by 50% from 10 °C to 40 °C. Orthodromic spikes are affected by temperature in a similar way to the antidromic spikes.The membrane resistance of both pre- and postsynaptic motor neurons falls as the temperature is raised. The membrane resistance of FETi falls by a factor of 4 (about 4 M at 10 °C to 1 M at 40 °C). A contributory component to this fall could be the increase in the frequency of synaptic potentials generated as a result of inputs from other neurons. No temperature dependence could be demonstrated on the voltage threshold relative to resting potential for evoking orthodromic spikes, but because the resistance changes, the current needed to achieve this voltage must be increased at higher temperatures.The latency measured from the peak of the spike in the soma of FETi to the start of the EPSP in the soma of a flexor motor neuron decreases by a factor of 20 (10 ms at 10 °C to 0.5 ms at 40 °C).In a postsynaptic flexor tibiae motor neuron, the amplitude of the evoked synaptic potential increases by a factor of 3.4 (5 mV to 17 mV), its duration at half maximum amplitude decreases by 3 (7 ms at 12 °C to 2.3 ms at 32 °C) and its rate of rise increases by 3. An increased likelihood that spikes will occur in the flexor contributes to the enhanced amplitude of the compound EPSP at temperatures above 20 °C.Abbreviation FETi fast extensor tibiae motor neuron  相似文献   

18.
The anion channel protein from Clavibacter michiganense ssp. nebraskense (Schürholz, Th. et al. 1991, J. Membrane Biol. 123: 1-8) was analyzed at different concentrations of KCl and KF. At 0.8 M KCl the conductance G(Vm) increases exponentially from 21 pS at 50 mV up to 53 pS at Vm = 200 mV, 20°C. The concentration dependence of G(Vm) corresponds to a Michaelis-Menten type saturation function at all membrane voltage values applied (0-200 mV). The anion concentration K0.5, where G(Vm) has its half-maximum value, increases from 0.12 M at 50 mV to 0.24 M at 175 mV for channels in a soybean phospholipid bilayer. The voltage dependence of the single channel conductance, which is different for charged and neutral lipid bilayers, can be described either by a two-state flicker (2SF) model and the Nernst-Planck continuum theory, or by a two barrier, one-site (2B1S) model with asymmetric barriers. The increase in the number of open channels after a voltage jump from 50 mV to 150 mV has a time constant of 0.8 s. The changes of the single-channel conductance are much faster (<1 ms). The electric part of the gating process is characterized by the (reversible) molar electrical work ΔGθel = ρZgFVm ≈ -1.3 RT, which corresponds to the movement of one charge of the gating charge number |Zg| = 1 across the fraction ρ = ΔVm/Vm = 0.15 of the membrane voltage Vm = 200 mV. Unlike with chloride, the single channel conductance of fluoride has a maximum at about 150 mV in the presence of the buffer PIPES (≥5 mM, pH 6.8) with K0.5 ≈ 1 M. It is shown that the decrease in conductance is due to a blocking of the channel by the PIPES anion. In summary, the results indicate that the anion transport by the Clavibacter anion channel (CAC) does not require a voltage dependent conformation change of the CAC.  相似文献   

19.
Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (−42.2%) and total nitrogen (TN) (−25.8%) at surface layer (0–30 cm) as well as their stratification ratios (SRs) (0–5 cm:50–70 cm and 5–10 cm:50–70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0–30 cm) and their SRs (0–5 cm:50–70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0–100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20–70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0–10 cm layer and anions at 5–100 cm layer, mainly decreasing the proportion of Na+, Cl and SO4 2−. Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0–20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm.  相似文献   

20.

Background

Chagas disease prevention critically depends on keeping houses free of triatomine vectors. Insecticide spraying is very effective, but re-infestation of treated dwellings is commonplace. Early detection-elimination of re-infestation foci is key to long-term control; however, all available vector-detection methods have low sensitivity. Chemically-baited traps are widely used in vector and pest control-surveillance systems; here, we test this approach for Triatoma spp. detection under field conditions in the Gran Chaco.

Methodology/Principal Findings

Using a repeated-sampling approach and logistic models that explicitly take detection failures into account, we simultaneously estimate vector occurrence and detection probabilities. We then model detection probabilities (conditioned on vector occurrence) as a function of trapping system to measure the effect of chemical baits. We find a positive effect of baits after three (odds ratio [OR] 5.10; 95% confidence interval [CI95] 2.59–10.04) and six months (OR 2.20, CI95 1.04–4.65). Detection probabilities are estimated at p≈0.40–0.50 for baited and at just p≈0.15 for control traps. Bait effect is very strong on T. infestans (three-month assessment: OR 12.30, CI95 4.44–34.10; p≈0.64), whereas T. sordida is captured with similar frequency in baited and unbaited traps.

Conclusions/Significance

Chemically-baited traps hold promise for T. infestans surveillance; the sensitivity of the system at detecting small re-infestation foci rises from 12.5% to 63.6% when traps are baited with semiochemicals. Accounting for imperfect detection, infestation is estimated at 26% (CI95 16–40) after three and 20% (CI95 11–34) after six months. In the same assessments, traps detected infestation in 14% and 8.5% of dwellings, whereas timed manual searches (the standard approach) did so in just 1.4% of dwellings only in the first survey. Since infestation rates are the main indicator used for decision-making in control programs, the approach we present may help improve T. infestans surveillance and control program management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号