首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plants encounter throughout their life all kinds of microorganisms, such as bacteria, fungi, or oomycetes, with either friendly or unfriendly intentions. During evolution, plants have developed a wide range of defense mechanisms against attackers. In return, adapted microbes have developed strategies to overcome the plant lines of defense, some of these microbes engaging in mutualistic or parasitic endosymbioses. By sensing microbe presence and activating signaling cascades, the plasma membrane through its dynamics plays a crucial role in the ongoing molecular dialogue between plants and microbes. This review describes the contribution of endocytosis to different aspects of plant–microbe interactions, microbe recognition and development of a basal immune response, and colonization of plant cells by endosymbionts. The putative endocytic routes for the entry of microbe molecules or microbes themselves are explored with a special emphasis on clathrin-mediated endocytosis. Finally, we evaluate recent findings that suggest a link between the compartmentalization of plant plasma membrane into microdomains and endocytosis.  相似文献   

3.
4.
5.
6.
7.
8.
Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant–microbe interactions including phytostimulation and phytopathogenesis.  相似文献   

9.
10.
11.
12.
The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN/HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN) and hydrogen peroxide (H2O2) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host–pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa.  相似文献   

13.
14.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Microbiology.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号