首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the World and there is a need for a vaccine. To enhance the immunogenicity of a vaccine formulated with the Chlamydia muridarum (Cm) mouse pneumonitis recombinant major outer membrane protein (MOMP), we used combinations of Pam2CSK4 + CpG-1826 and Montanide ISA 720 VG + CpG-1826 as adjuvants. Neisseria gonorrhoeae recombinant porin B (Ng-PorB) was used as the antigen control with the same adjuvants. Female BALB/c mice were immunized twice in the nares (i.n.) or in the colon (cl.) and were boosted twice by the intramuscular plus subcutaneous (i.m. + s.c.) routes. Based on the IgG2a/IgG1 ratio in sera, mice immunized with MOMP + Pam2CSK4 + CpG-1826 showed a strong Th2 response while animals vaccinated with MOMP + Montanide ISA 720 VG + CpG-1826 had a Th1 response. Both groups of mice also developed robust Cm-specific T cell proliferation and high levels of IFN-γ. Four weeks after the last immunization, the mice were challenged i.n. with 104 inclusion-forming units (IFU) of Cm. Using changes in body weight and number of IFU recovered from the lungs at 10 days post-challenge mice immunized i.n. + i.m./s.c. with MOMP + Pam2CSK4 + CpG-1826 were better protected than other groups. In conclusion, MOMP adjuvanted with Pam2CSK4 + CpG-1826, elicits strong humoral and cellular immune responses and induces significant protection against Chlamydia.  相似文献   

2.
A novel Chlamydia muridarum antigen (TC0582) was used to vaccinate BALB/c mice. Mice were also immunized with other components of the ATP synthase complex (TC0580, TC0581, and TC0584), or with the major outer membrane protein (MOMP). TC0582 was also formulated in combination with TC0580, TC0581 or MOMP. TC0582 alone, or in combination with the other antigens, elicited strong Chlamydia-specific humoral and cellular immune responses. Vaccinated animals were challenged intranasally and the course of the infection was followed for 10 days. Based on percentage change in body weight, lung weight, and number of Chlamydia inclusion forming units recovered from the lungs, mice immunized with TC0582, TC0581 or MOMP, as single antigens, showed significant protection. Mice immunized with combinations of two antigens were also protected but the level of protection was not additive. TC0582 has sequence homology with the eukaryotic ATP synthase subunit A (AtpA). Therefore, to determine if immunization with TC0582, or with Chlamydia, elicited antibodies that cross-reacted with the mouse AtpA, the two proteins were printed on a microarray. Sera from mice immunized with TC0582 and/or live Chlamydia, strongly reacted with TC0582 but did not recognize the mouse AtpA. In conclusion, TC0582 may be considered as a Chlamydia vaccine candidate.  相似文献   

3.
Chlamydia trachomatis is a major bacterial pathogen throughout the world. Although antibiotic therapy can be implemented in the case of early detection, a majority of the infections are asymptomatic, requiring the development of preventive measures. Efforts have focused on the production of a vaccine using the C. trachomatis major outer membrane protein (MOMP). MOMP is purified in its native (n) trimeric form using the zwitterionic detergent Z3–14, but its stability in detergent solutions is limited. Amphipols (APols) are synthetic polymers that can stabilize membrane proteins (MPs) in detergent-free aqueous solutions. Preservation of protein structure and optimization of exposure of the most effective antigenic regions can avoid vaccination with misfolded, poorly protective protein. Previously, we showed that APols maintain nMOMP secondary structure and that nMOMP/APol vaccine formulations elicit better protection than formulations using either recombinant or nMOMP solubilized in Z3–14. To achieve a greater understanding of the structural behavior and stability of nMOMP in APols, we have used several spectroscopic techniques to characterize its secondary structure (circular dichroism), tertiary and quaternary structures (immunochemistry and gel electrophoresis) and aggregation state (light scattering) as a function of temperature and time. We have also recorded NMR spectra of 15N-labeled nMOMP and find that the exposed loops are detectable in APols but not in detergent. Our analyses show that APols protect nMOMP much better than Z3–14 against denaturation due to continuous heating, repeated freeze/thaw cycles, or extended storage at room temperature. These results indicate that APols can help improve MP-based vaccine formulations.  相似文献   

4.
In schistosomiasis, the current control strategy does not prevent reinfection, therefore, vaccine strategies are essential to combat the Schistosoma mansoni. The efficacy vaccine depends on parasite stage and effective adjuvant. We have recently demonstrated that S. mansoni schistosomula tegument (Smteg) is able to activate dendritic cells up regulate CD40 and CD86 molecules and induce a partial protection in mice (43–48%) when formulated with Freund's adjuvant. In this study we evaluated the ability of Smteg + alum or Smteg + alum + CpG-ODN to induce protection in mice. Our results demonstrate that Smteg + alum + CpG-ODN induced a partial reduction in worm burden (43.1%), reduction in the number of eggs eliminated in the feces. The protective response was associated with a predominant Th1 type of immune response, with increased production of specific IgG2c, IFN-γ and TNF-α, B cells proliferation and CD4 cells and macrophages activation.  相似文献   

5.
Fasciolosis is considered the most widespread trematode disease affecting grazing animals around the world; it is currently recognised by the World Health Organisation as an emergent human pathogen. Triclabendazole is still the most effective drug against this disease; however, resistant strains have appeared and developing an effective vaccine against this disease has increasingly become a priority. Several bioinformatics tools were here used for predicting B- and T-cell epitopes according to the available data for Fasciola hepatica protein amino acid sequences. BALB/c mice were immunised with the synthetic peptides by using the ADAD vaccination system and several immune response parameters were measured (antibody titres, cytokine levels, T-cell populations) to evaluate their ability to elicit an immune response. Based on the immunogenicity results so obtained, seven peptides were selected to assess their protection-inducing ability against experimental infection with F. hepatica metacercariae. Twenty-four B- or T-epitope-containing peptides were predicted and chemically synthesised. Immunisation of mice with peptides so-called B1, B2, B5, B6, T14, T15 and T16 induced high levels of total IgG, IgG1 and IgG2a (p<0.05) and a mixed Th1/Th2/Th17/Treg immune response, according to IFN-γ, IL-4, IL-17 and IL-10 levels, accompanied by increased CD62L+ T-cell populations. A high level of protection was obtained in mice vaccinated with peptides B2, B5, B6 and T15 formulated in the ADAD vaccination system with the AA0029 immunomodulator. The bioinformatics approach used in the present study led to the identification of seven peptides as vaccine candidates against the infection caused by Fasciola hepatica (a liver-fluke trematode). However, vaccine efficacy must be evaluated in other host species, including those having veterinary importance.  相似文献   

6.
We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2''s 40,000-amino-acid proteome. We were interested to determine if a correlate of immunity might be more readily identified if 1. animals were immunized with a polyvalent immunogen such as a live virus and/or 2. the magnitude of the vaccine-induced immune response was gauged in terms of the IgG antibody response to all of HSV-2''s antigens (pan-HSV-2 IgG). Pre-challenge pan-HSV-2 IgG levels and protection against HSV-2 were compared in mice and/or guinea pigs immunized with a gD-2 subunit vaccine, wild-type HSV-2, or one of several attenuated HSV-2 ICP0 viruses (0Δ254, 0Δ810, 0ΔRING, or 0ΔNLS). These six HSV-2 immunogens elicited a wide range of pan-HSV-2 IgG levels spanning an ∼500-fold range. For 5 of the 6 immunogens tested, pre-challenge levels of pan-HSV-2 IgG quantitatively correlated with reductions in HSV-2 challenge virus shedding and increased survival frequency following HSV-2 challenge. Collectively, the results suggest that pan-HSV-2 IgG levels may provide a simple and useful screening tool for evaluating the potential of a HSV-2 vaccine candidate to elicit protection against HSV-2 genital herpes.  相似文献   

7.
We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.  相似文献   

8.
Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans, and existing animal vaccines have limitations. There is a need to develop a safe and effective vaccine against human and animal brucellosis. In the present study, we generated recombinant cysteine synthase A (rCysK) of Brucella abortus in Escherichia coli and purified it up to homogeneity by metal affinity chromatography. The immunogenicity and protective efficacy of purified rCysK were evaluated in BALB/c mice with Freund’s adjuvant, aluminium hydroxide gel or without any adjuvant. High titres of anti-rCysK IgG antibody predominated by IgG1 were observed in all immunized mice. After stimulation with rCysK, the spleen lymphocytes of mice immunized with CysK formulated with aluminium hydroxide gel produced significant levels of IFN-γ. Protection against challenge with virulent B. abortus strain 544 was determined in BALB/c mice, and significant protection was observed in all CysK immunized groups when compared with PBS control. Among all the CysK vaccine groups, comparatively better protection was observed in mice immunized with aluminium hydroxide gel (1.064 units of protection). Overall, the results of the study suggest that rCysK induces primarily Th2 type of immune response and provides partial protection against B. abortus challenge.  相似文献   

9.
The development of a new vaccine as a substitute for Bacillus Calmette–Guerin or to improve its efficacy is one of the many World Health Organization goals to control tuberculosis. Mycobacterial vectors have been used successfully in the development of vaccines against tuberculosis. To enhance the potential utility of Mycobacterium smegmatis as a vaccine, it was transformed with a recombinant plasmid containing the partial sequences of the genes Ag85c, MPT51, and HspX (CMX) from M. tuberculosis. The newly generated recombinant strain mc2-CMX was tested in a murine model of infection. The recombinant vaccine induced specific IgG1 or IgG2a responses to CMX. CD4+ and CD8+ T cells from the lungs and spleen responded ex vivo to CMX, producing IFN-γ, IL17, TNF-α, and IL2. The vaccine thus induced a significant immune response in mice. Mice vaccinated with mc2-CMX and challenged with M. tuberculosis showed better protection than mice immunized with wild-type M. smegmatis or BCG. To increase the safety and immunogenicity of the CMX antigens, we used a recombinant strain of M. smegmatis, IKE (immune killing evasion), to express CMX. The recombinant vaccine IKE-CMX induced a better protective response than mc2-CMX. The data presented here suggest that the expression of CMX antigens improves the immune response and the protection induced in mice when M. smegmatis is used as vaccine against tuberculosis.  相似文献   

10.

Background

The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis.

Methods and Principal Findings

In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study.

Conclusion and Significance

Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis.  相似文献   

11.
12.
Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vaccination strategy is urgently required. Boosting the BCG-induced immunity may offer a potentially advantageous strategy for advancing TB vaccine development, instead of replacing BCG completely. Despite the improved protection of the airway immunization by using live BCG, the use of live BCG as an airway boosting agent may evoke safety concerns. Here, we analyzed the protective efficacy of γ-irradiated BCG as a BCG-prime boosting agent for airway immunization against a hypervirulent clinical strain challenge with Mycobacterium tuberculosis HN878 in a mouse TB model. After the aerosol challenge with the HN878 strain, the mice vaccinated with BCG via the parenteral route exhibited only mild and transient protection, whereas BCG vaccination followed by multiple aerosolized boosting with γ-irradiated BCG efficiently maintained long-lasting control of Mtb in terms of bacterial reduction and pathological findings. Further immunological investigation revealed that this approach resulted in a significant increase in the cellular responses in terms of a robust expansion of antigen (PPD and Ag85A)-specific CD4+ T cells concomitantly producing IFN-γ, TNF-α, and IL-2, as well as a high level of IFN-γ-producing recall response via both the local and systemic immune systems upon further boosting. Collectively, aerosolized boosting of γ-irradiated BCG is able to elicit strong Th1-biased immune responses and confer enhanced protection against a hypervirulent Mycobacterium tuberculosis HN878 infection in a boosting number-dependent manner.  相似文献   

13.
Heat shock proteins (Hsps) have been reported to be dominant antigens for the host immune response to various pathogens and thus, have great potential for use in vaccination. In the present study, we evaluated the immunogenicity and protective efficacy of GroEL of Salmonella enterica serovar Typhi against lethal infection by S. typhi Ty2 in mice with or without adjuvants. Anti GroEL–IgG titers were significantly higher in mice immunized with either GroEL-alone or in combination with alum/Complete Freund’s adjuvant (CFA) as compared to the control. Analysis of antibody isotypes suggested predominance of Th2 type immune response in GroEL + alum immunized animals as revealed by higher IgG1/IgG2a ratio. Whereas, immunization of animals with GroEL + CFA or GroEL-alone shifted the immune response toward Th1 phenotype. Mice immunized with GroEL with or without adjuvants, showed a significant increase in lymphocyte proliferation and cytokine levels. The animals immunized with GroEL + CFA or GroEL-alone showed higher IFN-γ and IL-2 levels than alum group, indicating Th1 response whereas IL-4 levels (Th2 response) were found to be highest in alum group as compared to other two immunized groups. Immunization of mice with GroEL-alone, GroEL + alum, and GroEL + CFA provided 70, 50 and 80% protection, respectively, against lethal challenge by S. typhi in mice. The differences in the percentage protection among various groups were attributed to the differences in the immune responses generated by respective immunizations. The present study shows that GroEL forms an ideal candidate molecule to develop a recombinant protein based vaccine against human typhoid.  相似文献   

14.
《Phytomedicine》2014,21(13):1759-1766
To improve the immune efficacy of protein subunit vaccines, novel adjuvants are needed to elicit a suitable protective immune response and to promote long term immunologic memory. In this work, soyasaponin Ab, a major constituent among group A soyasaponins in soybeans was purified and prepared from soy hypocotyls. The immunomodulatory effects of soyasaponin Ab both in vitro and in vivo were investigated, and its pro-immunomodulatory molecular mechanism was also studied. For in vitro assays, with mouse macrophage cell line RAW264.7 as the studying model, both cytotoxicity and immune stimulatory activity were investigated to evaluate the potential of soyasaponin Ab as the vaccine adjuvant. The results indicated that soyasaponin Ab could be significantly safer than Quillaja saponins (QS). Soyasaponin Ab showed no toxicities over the tested concentration ranges compared to QS. Soyasaponin Ab was proved able to promote releases of inflammatory cytokines like TNFα and IL-1β in a dose-dependent manner. Furthermore, NF-κB signalling was also activated by soyasaponin Ab effectively. In addition, with TLR4 gene expression of RAW264.7 cell inhibited by RNA interference, immune stimulatory effects by soyasaponin Ab dropped down significantly. On the other hand, the in vivo experiment results showed that anti-ovalbumin (OVA) IgG, IgG1, IgG2a, IgG2b were significantly enhanced by the soyasaponin Ab and QS groups (p < 0.05 or p < 0.01). The results suggested that compared to QS, soyasaponin Ab may represent a viable candidate for effective vaccine adjuvant. TLR4 receptor dependent pathway may be involved in immune stimulatory effects of soyasaponin Ab.  相似文献   

15.
Protections against Fasciola gigantica infection in mice immunized with the individual and combined cathepsin L1H and cathepsin B3 vaccines were assessed. The vaccines comprised recombinant (r) pro-proteins of cathepsin L1H and B3 (rproFgCatL1H and rproFgCatB3) and combined proteins which were expressed in Pichia pastoris. The experimental trials were performed in ICR mice (n = 10 per group) by subcutaneous injection with 50 μg of the recombinant proteins combined with Alum or Freund's adjuvants. At two weeks after the third immunization, mice were infected with 15 F. gigantica metacercariae per mouse by oral route. The percents of protection of rproFgCatL1H, rproFgCatB3 and combined vaccines against F. gigantica were approximately 58.8 to 75.0% when compared with adjuvant-infected control. These protective effects were similar among groups receiving vaccines with Alum or Freund's adjuvants. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th1 and Th2 immune responses, it was found that both Th1 and Th2 humoral immune responses were significantly increased in vaccinated groups compared with the control groups, with higher levels of IgG1 (Th2) than IgG2a (Th1). Mice in vaccinated groups showed reduction in liver pathological lesions when compared with control groups. This study indicates that the combined rproFgCatB3 and rproFgCatL1H vaccine had a high protective potential than a single a vaccine, with Alum and Freund's adjuvants showing similar level of protection. These results can serve as guidelines for the testing of this F. gigantica vaccine in larger economic animals.  相似文献   

16.
17.
Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4+ and CD8+ T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 109, 1010 and 1011 CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 1011 CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.  相似文献   

18.

Background  

Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine.  相似文献   

19.
There is now convincing evidence that the successful development of an effective CMV vaccine will require improved formulation and adjuvant selection that is capable of inducing both humoral and cellular immune responses. Here, we have designed a novel bivalent subunit vaccine formulation based on CMV-encoded oligomeric glycoprotein B (gB) and polyepitope protein in combination with human compatible TLR9 agonist CpG1018. The polyepitope protein includes multiple minimal HLA class I-restricted CD8+ T cell epitopes from different antigens of CMV. This subunit vaccine generated durable anti-viral antibodies, CMV-specific CD4+ and CD8+ T cell responses in multiple HLA expressing mice. Antibody responses included broad TH1 isotypes (IgG2a, IgG2b and IgG3) and potently neutralized CMV infection in fibroblasts and epithelial cells. Furthermore, polyfunctional antigen-specific T cell immunity and antiviral antibody responses showed long-term memory maintenance. These observations argue that this novel vaccine strategy, if applied to humans, could facilitate the generation of robust humoral and cellular immune responses which may be more effective in preventing CMV-associated complications in various clinical settings.  相似文献   

20.
Plasmodium falciparum infection during pregnancy contributes substantially to malaria burden in both mothers and offspring. Analysis of naturally acquired immune responses that confer protection against parasitemia and clinical disease is important to guide vaccine evaluation as well as identify immune correlates. Unfortunately, few studies have addressed the relationship between immune responses to malaria vaccine candidate antigens and protection against adverse effects on pregnant women and newborn birth weight. This study examines the relationship of maternal antibody responses to serine repeat antigen-5 (SE36) and merozoite surface protein-1 (MSP119 and MSP142) with placental parasitemia and birth weight. In a peri-urban setting in Uganda, pregnant women without placental parasites have high median ODs for antibodies against SE36 (P < 0.001). Naturally acquired anti-SE36 IgG was most prevalent in women without placental parasitemia (P < 0.001). Furthermore, pregnant women with significantly high levels of anti-SE36 IgG delivered babies with normal birth weights (P < 0.001). That antibody to SE36 was associated with both a reduced risk of placental parasitemia and resulting normal birth weight in newborns suggests some protective role. In contrast, although antibody to MSP142 was also associated with reduced placental parasitemia and immune responses to both MSP119 and MSP142 may be of importance, there was no association between anti-MSP119 antibodies and infant birth weight outcomes. This study highlights the need for conducting further studies to investigate the association of antibodies against SE36 and outcomes of malaria infection in pregnant women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号