首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Transforming Growth Factor-β (TGF-β) plays an essential role in differentiation of dental pulp cells into odontoblasts during reparative dentine formation. However, the mechanism by which TGF-β stimulates dental repair remains rather obscure. Human dental pulp cells were used as an in vitro model in the present work. We showed that TGF-β signaled through mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38, along with Smad pathway. Distinct pathways exerted different time response. SB203580, a specific p38 MAPK inhibitor, reduced phosphorylation of Smad3, while it slightly enhanced phosphorylation of Smad2. Increased phosphorylation of ERK1/2 and p38 confirmed that SB203580 did not block activation of TGF-β receptors. In addition, the inhibition of ERK1/2 activity with MEK1/2 inhibitor U0126 increased TGF-β mediated phosphorylation of Smad3. Our results suggest that p38 affects the phosphorylation of Smad2 and Smad3 differentially during TGF-β signaling in human dental pulp cells and ERK1/2 might be involved in the process.  相似文献   

3.
Alterations occur within distal neuronal compartments, including axons and synapses, during the course of neurodegenerative diseases such as Parkinson’s disease (PD). These changes could hold important implications for the functioning of neural networks, especially since research studies have shown a loss of dendritic spines locating to medium spiny projection neurons and impaired axonal transport in PD-affected brains. However, despite ever-increasing awareness of the vulnerability of synapses and axons, inadequate understanding of the independent mechanisms regulating non-somatic neurodegeneration prevails. This has resulted in limited therapeutic strategies capable of targeting these distinct cellular compartments. Deregulated protein synthesis, folding and degrading proteins, and protein quality-control systems have repeatedly been linked with morphological and functional alterations of synapses in the PD-affected brains. Here, we review current understanding concerning the proteins involved in structural and functional changes that affect synaptic contact-points in PD. The collection of studies discussed emphasizes the need for developing therapeutics aimed at deregulated protein synthesis and degradation pathways operating at axonal and dendritic synapses for preserving “normal” circuitry and function, for as long as possible.  相似文献   

4.
5.
6.
7.
8.
9.
Inflammatory regulators, including endogenous anti-inflammatory systems, can down-regulate inflammation thus providing negative feedback. Chronic inflammation can result from imbalance between levels of inflammatory mediators and regulators during immune responses. As a consequence, there are heightened inflammatory responses and irreversible tissue damage associated with many age-related chronic diseases. Alzheimer’s disease (AD) brain is marked by prominent inflammatory features, in which microglial activation is the driving force for the elaboration of an inflammatory cascade. How the regulation of inflammation loses its effectiveness during AD pathogenesis remains largely unclear. In this article, we will first review current knowledge of microglial activation and its association with AD pathology. We then discuss four examples of anti-inflammatory systems that could play a role in regulating microglial activation: CD200/CD200 receptor, vitamin D receptor, peroxisome proliferator-activated receptors, and soluble receptor for advanced glycation end products. Through this, we hope to illustrate the diverse aspects of inflammatory regulatory systems in brain and neurodegenerative diseases such as AD. We also propose the importance of neuronal defense systems, because they are part of the integral inflammatory and anti-inflammatory systems. Augmenting the anti-inflammatory defenses of neurons can be included in the strategy for restoration of balanced immune responses during aging and neurodegenerative diseases.  相似文献   

10.
11.
12.
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder. The exact mechanism for the AD pathogenesis is not clearly understood. However, a number of hypotheses have been proposed to explain the pathogenesis of AD. One the hypotheses is the oxidative stress hypothesis that is supported by a number of studies which reported an increase in the levels of reactive oxygen/reactive nitrogen species and their products with a concomitant decrease in the levels of antioxidant enzymes in AD brain. In the present study, we measured in AD brain the expression levels of different forms (monomer, dimer and tetramer) of the pro-apoptotic protein, p53, and observed greater levels of p53 monomer and dimer in AD brain compared to control. In addition, we also showed the selective glutathionylation of monomeric and dimeric form of p53 in AD brain. We propose that glutathionylation of p53 may prevent the formation of tetramer, an aggregate form required for effective action of p53, and may be involved in oxidative stress conditions and neurodegeneration observed in this dementing disorder. Special issue article in Honour of Dr. Akitane Mori. Fabio Di Domenico and Giovanna Cenini contributed equally. An erratum to this article can be found at  相似文献   

13.
14.
This study investigated whether the second-generation translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson’s disease (PD). Positron Emission Tomography (PET) radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs) (8 PD and age-matched 8 healthy controls (HCs)), 16 high-affinity binders (HABs) (8 PD and age-matched 8 HCs) and 4 low-affinity binders (LABs) (3 PD and 1 HCs) were identified. Total distribution volume (VT) values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001) and putamen (p < 0.001), but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD.  相似文献   

15.
16.
17.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

18.
Zhang  Yidan  Zhao  Yuan  Zhang  Jian  Yang  Guofeng 《Neurochemical research》2020,45(11):2560-2572

Alzheimer’s disease (AD) is a common neurodegenerative disease of progressive dementia which is characterized pathologically by extracellular neuritic plaques containing aggregated amyloid beta (Aβ) and intracellular hyperphosphorylated tau protein tangles in cerebrum. It has been confirmed that microglia-specific nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated chronic neuroinflammation plays a crucial role in the pathogenesis of AD. Stimulated by Aβ deposition, NLRP3 assembles and activates within microglia in the AD brain, leading to caspase-1 activation along with downstream interleukin (IL)-1β secretion, and subsequent inflammatory events. Activation of the NLRP3 inflammasome mediates microglia to exhibit inflammatory M1 phenotype, with high expression of caspase-1 and IL-1β. This leads to Aβ deposition and neuronal loss in the amyloid precursor protein (APP)/human presenilin-1 (PS1) mouse model of AD. However, NLRP3 or caspase-1 deletion in APP/PS1 mice promotes microglia to transform to an anti-inflammatory M2 phenotype, with decreased secretion of caspase-1 and IL-1β. It also results in improved cognition, enhanced Aβ clearance, and a lower cerebral inflammatory response. This result suggests that the NLRP3 inflammasome may be an appropriate target for reducing neuroinflammation and alleviating pathological processes in AD. In the present review, we summarize the generally accepted regulatory mechanisms of NLRP3 inflammasome activation, and explore its role in neuroinflammation. Furthermore, we speculate on the possible roles of microglia-specific NLRP3 activation in AD pathogenesis and consider potential therapeutic interventions targeting the NLRP3 inflammasome in AD.

  相似文献   

19.
AMP-activated protein kinase (AMPK) is a heterotrimeric complex playing a crucial role in maintaining cellular energy homeostasis. Recently, homodimerization of mammalian AMPK and yeast ortholog SNF1 was shown by us and others. In SNF1, it involved specific hydrophobic residues in the kinase domain αG-helix. Mutation of the corresponding AMPK α-subunit residues (Val-219 and Phe-223) to glutamate reduced the tendency of the kinase to form higher order homo-oligomers, as was determined by the following three independent techniques in vitro: (i) small angle x-ray scattering, (ii) surface plasmon resonance spectroscopy, and (iii) two-dimensional blue native/SDS-PAGE. Recombinant protein as well as AMPK in cell lysates of primary cells revealed distinct complexes of various sizes. In particular, the assembly of very high molecular mass complexes was dependent on both the αG-helix-mediated hydrophobic interactions and kinase activation. In vitro and when overexpressed in double knock-out (α1−/−, α2−/−) mouse embryonic fibroblast cells, activation of mutant AMPK was impaired, indicating a critical role of the αG-helix residues for AMPK activation via its upstream kinases. Also inactivation by protein phosphatase 2Cα was affected in mutant AMPK. Importantly, activation of mutant AMPK by LKB1 was restored by exchanging the corresponding and conserved hydrophobic αG-helix residues of LKB1 (Ile-260 and Phe-264) to positively charged amino acids. These mutations functionally rescued LKB1-dependent activation of mutant AMPK in vitro and in cell culture. Our data suggest a physiological role for the hydrophobic αG-helix residues in homo-oligomerization of heterotrimers and cellular interactions, in particular with upstream kinases, indicating an additional level of AMPK regulation.The maintenance of energy homeostasis is a basic requirement of all living organisms. The AMP-activated protein kinase (AMPK)2 is crucially involved in this essential process by playing a central role in sensing and regulating energy metabolism on the cellular and whole body level (16). AMPK is also participating in several signaling pathways associated with cancer and metabolic diseases, like type 2 diabetes mellitus, obesity, and other metabolic disorders (79).Mammalian AMPK belongs to a highly conserved family of serine/threonine protein kinases with homologs found in all eukaryotic organisms examined (1, 3, 10). Its heterotrimeric structure includes a catalytic α-subunit and regulatory β- and γ-subunits. These subunits exist in different isoforms (α1, α2, β1, β2, γ1, γ2, and γ3) and splice variants (for γ2 and γ3) and can thus assemble to a broad variety of heterotrimeric isoform combinations. The α- and β-subunits possess multiple autophosphorylation sites, which have been implicated in regulation of subcellular localization and kinase activation (1115). The most critical step of AMPK activation, however, is phosphorylation of Thr-172 within the activation segment of the α-subunit kinase domain. At least two AMPK upstream kinases (AMPKKs) have been identified so far, namely the tumor suppressor kinase LKB1 in complex with MO25 and STRAD (16) and Ca2+/calmodulin-dependent protein kinase kinase-2 (CamKK2) (17). Furthermore, the transforming growth factor-β-activated kinase 1 was also shown to activate AMPK using a variety of in vitro approaches (18), but the physiological relevance of these findings remains unclear. Besides direct phosphorylation of Thr-172, AMPK activity is stimulated by the allosteric activator AMP, which can bind to two Bateman domains formed by two pairs of CBS domains within the γ-subunit (1922). Hereby bound AMP not only allosterically stimulates AMPK but also protects Thr-172 from dephosphorylation by protein phosphatase 2Cα (PP2Cα) and thus hinders inactivation of the kinase (19, 22, 23). Consequently, on the cellular level, AMPK is activated upon metabolic stress increasing the AMP/ATP ratio. Furthermore, AMPK activation can also be induced by several chemical compounds, like nucleoside 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (24) and the anti-diabetic drug Metformin (2528). In addition, the small molecule compound A-769662 was recently developed as a direct allosteric activator of AMPK (29, 30).Previous work in our groups proposed a model of AMPK regulation by AMP, which incorporates the major functional features and the latest structural information (31). The latter mainly included truncated core complexes of AMPK from different species (3235). Further valuable structural information is provided by the x-ray structures of the isolated catalytic domains, in particular of the human AMPK α2-subunit (Protein Data Bank code 2H6D) and its yeast ortholog SNF1 (36, 37). The kinase domain of SNF1 is capable of forming homodimers in the protein crystal, as well as in vitro in solution, in a unique way, which has not been observed previously in any other kinase (36). The dimer interface is predominantly formed by hydrophobic interactions of the loop-αG region, also known as subdomain X situated on the large kinase lobe (36, 38, 39), and it mainly involves Ile-257 and Phe-261. Because the T-loop activation segment was buried within the dimer interface, it was suggested that the dimeric state of the SNF1 catalytic domain represents the inactive form of the kinase. Intriguingly, it was shown in our groups by small angle x-ray scattering that AMPK self-organizes in a concentration-dependent manner to form homo-oligomers in solution (31). However, the interface responsible for oligomerization of the AMPK heterotrimer has remained elusive.Here we further investigate the distinct oligomeric states of the AMPK heterotrimer and suggest a possible regulatory function for this process. Most importantly, we provide conclusive evidence for participation of αG-helix residues in the recognition of AMPK by its upstream kinases LKB1 and CamKK2.  相似文献   

20.

Background

The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon.

Methods

We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19 fecal bacterial groups/genera/species by quantitative RT-PCR of 16S or 23S rRNA. Although the six most predominant bacterial groups/genera/species covered on average 71.3% of total intestinal bacteria, our analysis was not comprehensive compared to metagenome analysis or 16S rRNA amplicon sequencing.

Results

In PD, the number of Lactobacillus was higher, while the sum of analyzed bacteria, Clostridium coccoides group, and Bacteroides fragilis group were lower than controls. Additionally, the sum of putative hydrogen-producing bacteria was lower in PD. A linear regression model to predict disease durations demonstrated that C. coccoides group and Lactobacillus gasseri subgroup had the largest negative and positive coefficients, respectively. As a linear regression model to predict stool frequencies showed that these bacteria were not associated with constipation, changes in these bacteria were unlikely to represent worsening of constipation in the course of progression of PD. In PD, the serum lipopolysaccharide (LPS)-binding protein levels were lower than controls, while the levels of serum diamine oxidase, a marker for intestinal mucosal integrity, remained unchanged in PD.

Conclusions

The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD. The increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis. Conversely, intestinal dysbiosis may lead to the increased intestinal permeability. One or both of the two mechanisms may be operational in development and progression of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号