首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

An estimated 2.4 billion people live in areas at risk of dengue transmission, therefore the factors determining the establishment of endemic dengue in areas where transmission suitability is marginal is of considerable importance. Hanoi, Vietnam is such an area, and following a large dengue outbreak in 2009, we set out to determine if dengue is emerging in Hanoi.

Methods and Principal Findings

We undertook a temporal and spatial analysis of 25,983 dengue cases notified in Hanoi between 1998 and 2009. Age standardized incidence rates, standardized age of infection, and Standardized Morbidity Ratios (SMR) were calculated. A quasi-Poisson regression model was used to determine if dengue incidence was increasing over time. Wavelet analysis was used to explore the periodicity of dengue transmission and the association with climate variables. After excluding the two major outbreak years of 1998 and 2009 and correcting for changes in population age structure, we identified a significant annual increase in the incidence of dengue cases over the period 1999–2008 (incidence rate ratio  = 1.38, 95% confidence interval  = 1.20–1.58, p value  = 0.002). The age of notified dengue cases in Hanoi is high, with a median age of 23 years (mean 26.3 years). After adjusting for changes in population age structure, there was no statistically significant change in the median or mean age of dengue cases over the period studied. Districts in the central, highly urban, area of Hanoi have the highest incidence of dengue (SMR>3).

Conclusions

Hanoi is a low dengue transmission setting where dengue incidence has been increasing year on year since 1999. This trend needs to be confirmed with serological surveys, followed by studies to determine the underlying drivers of this emergence. Such studies can provide insights into the biological, demographic, and environmental changes associated with vulnerability to the establishment of endemic dengue.  相似文献   

2.
Weather factors are widely studied for their effects on indicating dengue incidence trends. However, these studies have been limited due to the complex epidemiology of dengue, which involves dynamic interplay of multiple factors such as herd immunity within a population, distinct serotypes of the virus, environmental factors and intervention programs. In this study, we investigate the impact of weather factors on dengue in Singapore, considering the disease epidemiology and profile of virus serotypes. A Poisson regression combined with Distributed Lag Non-linear Model (DLNM) was used to evaluate and compare the impact of weekly Absolute Humidity (AH) and other weather factors (mean temperature, minimum temperature, maximum temperature, rainfall, relative humidity and wind speed) on dengue incidence from 2001 to 2009. The same analysis was also performed on three sub-periods, defined by predominant circulating serotypes. The performance of DLNM regression models were then evaluated through the Akaike''s Information Criterion. From the correlation and DLNM regression modeling analyses of the studied period, AH was found to be a better predictor for modeling dengue incidence than the other unique weather variables. Whilst mean temperature (MeanT) also showed significant correlation with dengue incidence, the relationship between AH or MeanT and dengue incidence, however, varied in the three sub-periods. Our results showed that AH had a more stable impact on dengue incidence than temperature when virological factors were taken into consideration. AH appeared to be the most consistent factor in modeling dengue incidence in Singapore. Considering the changes in dominant serotypes, the improvements in vector control programs and the inconsistent weather patterns observed in the sub-periods, the impact of weather on dengue is modulated by these other factors. Future studies on the impact of climate change on dengue need to take all the other contributing factors into consideration in order to make meaningful public policy recommendations.  相似文献   

3.

Background

Travelers who acquire dengue infection are often routes for virus transmission to other regions. Nevertheless, the interplay between infected travelers, climate, vectors, and indigenous dengue incidence remains unclear. The role of foreign-origin cases on local dengue epidemics thus has been largely neglected by research. This study investigated the effect of both imported dengue and local meteorological factors on the occurrence of indigenous dengue in Taiwan.

Methods and Principal Findings

Using logistic and Poisson regression models, we analyzed bi-weekly, laboratory-confirmed dengue cases at their onset dates of illness from 1998 to 2007 to identify correlations between indigenous dengue and imported dengue cases (in the context of local meteorological factors) across different time lags. Our results revealed that the occurrence of indigenous dengue was significantly correlated with temporally-lagged cases of imported dengue (2–14 weeks), higher temperatures (6–14 weeks), and lower relative humidity (6–20 weeks). In addition, imported and indigenous dengue cases had a significant quantitative relationship in the onset of local epidemics. However, this relationship became less significant once indigenous epidemics progressed past the initial stage.

Conclusions

These findings imply that imported dengue cases are able to initiate indigenous epidemics when appropriate weather conditions are present. Early detection and case management of imported cases through rapid diagnosis may avert large-scale epidemics of dengue/dengue hemorrhagic fever. The deployment of an early-warning surveillance system, with the capacity to integrate meteorological data, will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries.  相似文献   

4.
Dengue fever is a systemic viral infection of epidemic proportions in tropical countries. The incidence of dengue fever is ever increasing and has doubled over the last few decades. Estimated 50million new cases are detected each year and close to 10000 deaths occur each year. Epidemics are unpredictable and unprecedented. When epidemics occur, health services are over whelmed leading to overcrowding of hospitals. At present there is no evidence that dengue epidemics can be predicted. Since the breeding of the dengue mosquito is directly influenced by environmental factors, it is plausible that epidemics could be predicted using weather data. We hypothesized that there is a mathematical relationship between incidence of dengue fever and environmental factors and if such relationship exists, new cases of dengue fever in the succeeding months can be predicted using weather data of the current month. We developed a mathematical model using machine learning technique. We used Island wide dengue epidemiology data, weather data and population density in developing the model. We used incidence of dengue fever, average rain fall, humidity, wind speed, temperature and population density of each district in the model. We found that the model is able to predict the incidence of dengue fever of a given month in a given district with precision (RMSE between 18- 35.3). Further, using weather data of a given month, the number of cases of dengue in succeeding months too can be predicted with precision (RMSE 10.4—30). Health authorities can use existing weather data in predicting epidemics in the immediate future and therefore measures to prevent new cases can be taken and more importantly the authorities can prepare local authorities for outbreaks.  相似文献   

5.

Background/Objectives

Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon.

Methods

We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections.

Results

The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people''s way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double.

Conclusion

In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries.  相似文献   

6.
BackgroundSeveral factors, including environmental and climatic factors, influence the transmission of vector-borne diseases. Nevertheless, the identification and relative importance of climatic factors for vector-borne diseases remain controversial. Dengue is the world''s most important viral vector-borne disease, and the controversy about climatic effects also applies in this case. Here we address the role of climate variability in shaping the interannual pattern of dengue epidemics.ConclusionThe underlying mechanism for the synchronisation of dengue epidemics may resemble that of a pacemaker, in which intrinsic disease dynamics interact with climate variations driven by El Niño to propagate travelling waves of infection. When association with El Niño is strong in the 2–3-y periodic mode, one observes high synchrony of dengue epidemics over Thailand. When this association is absent, the seasonal dynamics become dominant and the synchrony initiated in Bangkok collapses.  相似文献   

7.

Background

Dengue infection is endemic in many regions throughout the world. While insecticide fogging targeting the vector mosquito Aedes aegypti is a major control measure against dengue epidemics, the impact of this method remains controversial. A previous mathematical simulation study indicated that insecticide fogging minimized cases when conducted soon after peak disease prevalence, although the impact was minimal, possibly because seasonality and population immunity were not considered. Periodic outbreak patterns are also highly influenced by seasonal climatic conditions. Thus, these factors are important considerations when assessing the effect of vector control against dengue. We used mathematical simulations to identify the appropriate timing of insecticide fogging, considering seasonal change of vector populations, and to evaluate its impact on reducing dengue cases with various levels of transmission intensity.

Methodology/Principal Findings

We created the Susceptible-Exposed-Infectious-Recovered (SEIR) model of dengue virus transmission. Mosquito lifespan was assumed to change seasonally and the optimal timing of insecticide fogging to minimize dengue incidence under various lengths of the wet season was investigated. We also assessed whether insecticide fogging was equally effective at higher and lower endemic levels by running simulations over a 500-year period with various transmission intensities to produce an endemic state. In contrast to the previous study, the optimal application of insecticide fogging was between the onset of the wet season and the prevalence peak. Although it has less impact in areas that have higher endemicity and longer wet seasons, insecticide fogging can prevent a considerable number of dengue cases if applied at the optimal time.

Conclusions/Significance

The optimal timing of insecticide fogging and its impact on reducing dengue cases were greatly influenced by seasonality and the level of transmission intensity. We suggest that these factors should be considered when planning a control strategy against dengue vectors.  相似文献   

8.

Background

It has been suggested that the probability of dengue epidemics could increase because of climate change. The probability of epidemics is most commonly evaluated by the basic reproductive number (R0), and in mosquito-borne diseases, mosquito density (the number of female mosquitoes per person [MPP]) is the critical determinant of the R0 value. In dengue-endemic areas, 4 different serotypes of dengue virus coexist–a state known as hyperendemicity–and a certain proportion of the population is immune to one or more of these serotypes. Nevertheless, these factors are not included in the calculation of R0. We aimed to investigate the effects of temperature change, population immunity, and hyperendemicity on the threshold MPP that triggers an epidemic.

Methods and Findings

We designed a mathematical model of dengue transmission dynamics. An epidemic was defined as a 10% increase in seroprevalence in a year, and the MPP that triggered an epidemic was defined as the threshold MPP. Simulations were conducted in Singapore based on the recorded temperatures from 1980 to 2009 The threshold MPP was estimated with the effect of (1) temperature only; (2) temperature and fluctuation of population immunity; and (3) temperature, fluctuation of immunity, and hyperendemicity. When only the effect of temperature was considered, the threshold MPP was estimated to be 0.53 in the 1980s and 0.46 in the 2000s, a decrease of 13.2%. When the fluctuation of population immunity and hyperendemicity were considered in the model, the threshold MPP decreased by 38.7%, from 0.93 to 0.57, from the 1980s to the 2000s.

Conclusions

The threshold MPP was underestimated if population immunity was not considered and overestimated if hyperendemicity was not included in the simulations. In addition to temperature, these factors are particularly important when quantifying the threshold MPP for the purpose of setting goals for vector control in dengue-endemic areas.  相似文献   

9.

Background

A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early detection and monitoring of dengue epidemics.

Methodology/Principal Findings

Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the fraction of Google search query volume for specific dengue-related queries from that country against a time series of official dengue case counts for a time-frame within 2003–2010. The specific combination of queries used was chosen to maximize model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found to fit the data quite well, with validation correlations ranging from 0.82 to 0.99.

Conclusions/Significance

Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after some substantial delay, web search query data are available in near real-time. These data represent valuable complement to assist with traditional dengue surveillance.  相似文献   

10.

Background

Dengue is a major global public health problem with increasing incidence and geographic spread. The epidemiology is complex with long inter-epidemic intervals and endemic with seasonal fluctuations. This study was initiated to investigate dengue transmission dynamics in Binh Thuan province, southern Vietnam.

Methodology

Wavelet analyses were performed on time series of monthly notified dengue cases from January 1994 to June 2009 (i) to detect and quantify dengue periodicity, (ii) to describe synchrony patterns in both time and space, (iii) to investigate the spatio-temporal waves and (iv) to associate the relationship between dengue incidence and El Niño-Southern Oscillation (ENSO) indices in Binh Thuan province, southern Vietnam.

Principal Findings

We demonstrate a continuous annual mode of oscillation and a multi-annual cycle of around 2–3-years was solely observed from 1996–2001. Synchrony in time and between districts was detected for both the annual and 2–3-year cycle. Phase differences used to describe the spatio-temporal patterns suggested that the seasonal wave of infection was either synchronous among all districts or moving away from Phan Thiet district. The 2–3-year periodic wave was moving towards, rather than away from Phan Thiet district. A strong non-stationary association between ENSO indices and climate variables with dengue incidence in the 2–3-year periodic band was found.

Conclusions

A multi-annual mode of oscillation was observed and these 2–3-year waves of infection probably started outside Binh Thuan province. Associations with climatic variables were observed with dengue incidence. Here, we have provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam.  相似文献   

11.
Children with poor nutrition are at increased risk of pneumonia. In many tropical settings seasonal pneumonia epidemics occur during the rainy season, which is often a period of poor nutrition. We have investigated whether seasonal hunger may be a driver of seasonal pneumonia epidemics in children in the tropical setting of the Philippines. In individual level cohort analysis, infant size and growth were both associated with increased pneumonia admissions, consistent with findings from previous studies. A low weight for age z-score in early infancy was associated with an increased risk of pneumonia admission over the following 12 months (RR for infants in the lowest quartile of weight for age z-scores 1.28 [95% CI 1.08 to 1.51]). Poor growth in smaller than average infants was also associated with an increased risk of pneumonia (RR for those in the lowest quartile of growth in early infancy 1.31 [95%CI 1.02 to 1.68]). At a population level, we found that seasonal undernutrition preceded the seasonal increase in pneumonia and respiratory syncytial virus admissions by approximately 10 weeks (pairwise correlation at this lag was −0.41 [95%CI −0.53 to −0.27] for pneumonia admissions, and −0.63 [95%CI −0.72 to −0.51] for respiratory syncytial virus admissions). This lag appears biologically plausible. These results suggest that in addition to being an individual level risk factor for pneumonia, poor nutrition may act as a population level driver of seasonal pneumonia epidemics in the tropics. Further investigation of the seasonal level association, in particular the estimation of the expected lag between seasonal undernutrition and increased pneumonia incidence, is recommended.  相似文献   

12.
The number of travel-acquired dengue infections has seen a consistent global rise over the past decade. An increased volume of international passenger air traffic originating from regions with endemic dengue has contributed to a rise in the number of dengue cases in both areas of endemicity and elsewhere. This paper reports results from a network-based risk assessment model which uses international passenger travel volumes, travel routes, travel distances, regional populations, and predictive species distribution models (for the two vector species, Aedes aegypti and Aedes albopictus) to quantify the relative risk posed by each airport in importing passengers with travel-acquired dengue infections. Two risk attributes are evaluated: (i) the risk posed by through traffic at each stopover airport and (ii) the risk posed by incoming travelers to each destination airport. The model results prioritize optimal locations (i.e., airports) for targeted dengue surveillance. The model is easily extendible to other vector-borne diseases.  相似文献   

13.
Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010–2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important environmental and human factors.  相似文献   

14.
Dengue incidence has been increasing dramatically in last few years with nearly four hundred million annual cases worldwide. It has been postulated that the wide-spread of dengue be due to climate change and increased exposure following the increasing human population in the affected regions. Climate change impacts on ecosystem have also set a critical role in the unpredictability of vector breeding behavior. A compelling strategy in the modeling of dengue outbreak must therefore integrate climate factors inasmuch as they determinedly govern incidence patterns. The aim of this paper is to construct a clustering integrated multiple regression model for predicting dengue incidence rate based on incidence, rainfall, and humidity data, which renders early warning information. The data used were dengue incidence data in Jakarta obtained from Jakarta Health Office and meteorological data from Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) in the period 2008–2016, defined on weekly basis. Cross-correlation was used to determine the interrelationship between dengue, rainfall, and relative humidity in Jakarta. Further improvement of the model was done by instrumenting the accumulated preceding one-month dengue incidence as an additional correction term in the model. The best fittings in terms of outbreak catchment and minimal mean squared error were obtained from the model variants involving the accumulated original and logarithm of the incidence rates respectively. Both the historical incidence rate locale and centroids of the meteorological data related to the clustering as well as the accumulated incidence rate serve as the key determinant for the upcoming incidence rate. An optimal clustering was determined in a way that the mean squared error achieves its foremost minimum, which almost coincides with the division into tertiles. These clustering strategies can be utilized to provide a more accurate forecast of the ominous dengue incidence for a few weeks’ lead-time.  相似文献   

15.
A postal survey of lameness in schools throughout Ghana showed an estimated prevalence of lameness attributable to poliomyetitis of 5-8 per 1000 school-aged children and an estimated mean annual incidence of paralytic poliomyelitis of 23 per 100 000 population. Official reported incidence rates range from 0-1 to 2-1 per 100 000 population, indicating that at least 90% of cases are not reported. No evidence of epidemics was found to account for these high rates. These suggest that mean annual incidence rates in tropical endemic countries have always been as great, if not greater, than those experienced by temperate countries during epidemic periods in the twentieth century and that the total number of cases of paralytic poliomyelitis occurring in the world each year has been reduced by only 25% since the advent of polio vaccine. Immunisation against poliomyelitis must have a high priority in Ghana and other tropical countries where the disease is endemic.  相似文献   

16.
Serologically defined primary dengue virus infection and/or subsequent homologous serotype infection is known to be associated with less severe disease as compared with secondary subsequent heterologous serotype infection. In geographical locales of high dengue endemicity, almost all individuals in the population are infected at some point in time and should therefore are at high risk of secondary infection. Interestingly, dengue viremia in healthy blood donors whose sera apparently lack detectable levels of specific antibody to dengue viral antigens has been reported. The incidence rate of potential immunologic hypo- or non-responders following natural primary dengue virus infection in dengue endemic regions, who do become immune responders only after repeated exposure, has not been described. These are the patients who may be diagnosed as primary infection in the subsequent infection, but actually are secondary infection. This concept has important implications with regards to the hypothesis of immunological enhancement of dengue pathogenesis, which has largely been advanced based on empirical observations and/or from in vitro experimental assays. The fact that dengue naïve travelers can suffer from severe dengue upon primary exposure while visiting dengue endemic countries underscores one of the major problems in explaining the role of immune enhancement in the pathogenesis of severe dengue virus infection. This evidence suggests that the mechanism(s) leading to severe dengue may not be associated with pre-existing enhancing antibody. Consequently, we propose a new paradigm for dengue virus infection classification. These include a) patients with naïve primary infection, b) those that are serologically defined primary in dengue endemic zones and c) those who are serologically defined secondary dengue virus infection. We submit that clarity with regards to such definitions may help facilitate the delineation of the potential mechanisms of severe dengue virus infection.  相似文献   

17.

Background

The use of internet search data has been demonstrated to be effective at predicting influenza incidence. This approach may be more successful for dengue which has large variation in annual incidence and a more distinctive clinical presentation and mode of transmission.

Methods

We gathered freely-available dengue incidence data from Singapore (weekly incidence, 2004–2011) and Bangkok (monthly incidence, 2004–2011). Internet search data for the same period were downloaded from Google Insights for Search. Search terms were chosen to reflect three categories of dengue-related search: nomenclature, signs/symptoms, and treatment. We compared three models to predict incidence: a step-down linear regression, generalized boosted regression, and negative binomial regression. Logistic regression and Support Vector Machine (SVM) models were used to predict a binary outcome defined by whether dengue incidence exceeded a chosen threshold. Incidence prediction models were assessed using and Pearson correlation between predicted and observed dengue incidence. Logistic and SVM model performance were assessed by the area under the receiver operating characteristic curve. Models were validated using multiple cross-validation techniques.

Results

The linear model selected by AIC step-down was found to be superior to other models considered. In Bangkok, the model has an , and a correlation of 0.869 between fitted and observed. In Singapore, the model has an , and a correlation of 0.931. In both Singapore and Bangkok, SVM models outperformed logistic regression in predicting periods of high incidence. The AUC for the SVM models using the 75th percentile cutoff is 0.906 in Singapore and 0.960 in Bangkok.

Conclusions

Internet search terms predict incidence and periods of large incidence of dengue with high accuracy and may prove useful in areas with underdeveloped surveillance systems. The methods presented here use freely available data and analysis tools and can be readily adapted to other settings.  相似文献   

18.

Background

The mosquito-borne dengue viruses are a major public health problem throughout the tropical and subtropical regions of the world. Changes in temperature and precipitation have well-defined roles in the transmission cycle and may thus play a role in changing incidence levels. The El Niño Southern Oscillation (ENSO) is a multiyear climate driver of local temperature and precipitation worldwide. Previous studies have reported varying degrees of association between ENSO and dengue incidence.

Methods and Findings

We analyzed the relationship between ENSO, local weather, and dengue incidence in Puerto Rico, Mexico, and Thailand using wavelet analysis to identify time- and frequency-specific association. In Puerto Rico, ENSO was transiently associated with temperature and dengue incidence on multiyear scales. However, only local precipitation and not temperature was associated with dengue on multiyear scales. In Thailand, ENSO was associated with both temperature and precipitation. Although precipitation was associated with dengue incidence, the association was nonstationary and likely spurious. In Mexico, no association between any of the variables was observed on the multiyear scale.

Conclusions

The evidence for a relationship between ENSO, climate, and dengue incidence presented here is weak. While multiyear climate variability may play a role in endemic interannual dengue dynamics, we did not find evidence of a strong, consistent relationship in any of the study areas. The role of ENSO may be obscured by local climate heterogeneity, insufficient data, randomly coincident outbreaks, and other, potentially stronger, intrinsic factors regulating transmission dynamics. Please see later in the article for the Editors'' Summary  相似文献   

19.
We have investigated the temporal distribution of dengue (DEN) virus serotypes in the department (state) of Santander, Colombia, in relation to dengue incidence, infection pattern, and severity of disease. Viral isolation was attended on a total of 1452 acute serum samples collected each week from 1998 to 2004. The infection pattern was evaluated in 596 laboratory-positive dengue cases using an IgG ELISA, and PRNT test. The dengue incidence was documented by the local health authority. Predominance of DEN-1 in 1998 and DEN-3 re-introduction and predominance in 2001-2003 coincided with outbreaks. Predominance of DEN-2 in 2000-2001 coincided with more dengue hemorrhagic fever (DHF). DEN-4 was isolated in 2000-2001 and 2004 but was not predominant. There was an annual increase of primary dengue infections (from 13.7 to 81.4%) that correlated with frequency of DEN-3 (r = 0.83; P = 0.038). From the total number of primary dengue infections DEN-3 (81.3%) was the most frequent serotype. DHF was more frequent in DEN-2 infected patients than in DEN-3 infected patients: 27.5 vs 10.9% (P < 0.05). DEN-3 viruses belonged to subtype C (restriction site-specific-polymerase chain reaction) like viruses isolated in Sri-Lanka and other countries in the Americas. Our findings show the importance of continuous virological surveillance to identify the risk factors of dengue epidemics and severity.  相似文献   

20.
Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号