首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究森林群落树种组成对苔藓植物分布的影响,利用多元统计方法研究粤东亚热带地区苔藓植物的组成和分布对林分类型的响应。根据森林乔木层的树种组成划分为翻白叶树(Pterospermum heterophyllum)、木荷(Schima superba)+米锥(Castanopsis carlesii)和米锥3种森林类型。结果表明,3种森林类型中苔类(liverworts)和藓类(mosses)植物群落组成特征总体上存在显著差异;双齿裂萼苔(Chiloscyphus latifolius)和细指苔(Kurzia gonyotricha)在3种类型林分中的重要值变化指示了苔类植物群落的差异。3种类型林分中,均以东亚拟鳞叶藓(Pseudotaxiphyllum pohliaecarpum)为优势种。不同林分中藓类植物种类组成主要表现为亚优种分布的不同。这表明森林群落树种组成作为重要的生物因子,对林内苔藓植物的分布和种类组成有重要影响。  相似文献   

2.
Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition.  相似文献   

3.
为了研究亚热带典型常绿阔叶林和亚热带山顶矮林的物种组成和群落结构,在广东石门台国家自然保护区内分别建立了1 hm2亚热带典型常绿阔叶林样地和1 hm2亚热带山顶矮林样地,以样地内所有胸径(DBH)≥1 cm的乔木、灌木和藤本为研究对象,分析两种森林类型的物种组成、密度、径级和株高结构。结果显示:(1)两种森林的Srensen物种相似性指数为0.41,优势种不同,但优势科却较相似;其中,茶科和杜鹃花科在两种森林中所占比例较高;(2)亚热带典型常绿阔叶林的幼苗(1 cm≤DBH〈2.5 cm)和幼树(2.5 cm≤DBH〈12.5 cm)密度都显著小于亚热带山顶矮林,但两种森林的小树(12.5 cm≤DBH〈25 cm)和大树(DBH≥25 cm)密度均无显著差异;亚热带典型常绿阔叶林幼苗和大树的平均胸径都显著大于亚热带山顶矮林,而幼树的平均胸径则显著小于亚热带山顶矮林,小树的平均胸径无显著差异;亚热带典型常绿阔叶林中小树和大树的平均高度都显著大于亚热带山顶矮林,而幼苗的平均高度显著小于亚热带山顶矮林,幼树的平均高度无显著差异。综合分析表明,亚热带典型常绿阔叶林和亚热带山顶矮林的物种组成、密度、胸径和高度结构差异较大,亚热带典型常绿阔叶林群落稳定性强于亚热带山顶矮林。  相似文献   

4.
落叶栎林是桂西地区南亚热带的典型次生林,也是该区域落叶阔叶林的重要群系组。该研究采用典型样方法对桂西地区落叶栎林群落进行调查,分析了该区域落叶栎林群落的物种组成、区系成分、物种多样性特征及其与地形因子的关系,为桂西地区南亚热带植物多样性保护与恢复提供依据。结果显示:(1)研究区落叶栎林群落维管束植物共计269种,隶属80科178属。(2)种子植物区系以热带成分为主,同时表现出一定程度的温带过渡性质。(3)聚类分析表明,调查的落叶栎林群落可分为云南波罗栎林、栓皮栎林、白栎林、麻栎林4种林分类型,其中以白栎林群落的物种多样性最高,且灌木层的物种多样性显著高于乔木层和草本层。(4)RDA分析显示,落叶栎林群落不同层次物种多样性的差异受地形因子的影响,多样性指标与经度、纬度、海拔之间具有明显的相关性(P<0.05),其中乔木层物种多样性主要与经度、纬度呈显著的相关性,灌木层物种多样性与纬度、海拔相关,草本层物种多样性与经度、纬度、海拔之间均有相关性。  相似文献   

5.
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of “Breuil-Chenue” in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0–5, 5–10, and 10–15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation–extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.  相似文献   

6.
7.

1

This study investigated 15 coexisting dominant species in a humid subtropical evergreen broad-leaved forest in southwest China, consisting of long-lived pioneers and climax species occurring in natural and disturbed regimes. The authors hypothesized that there would be non-tradeoff scaling relationships between sprouting and seed size among species, with the aim of uncovering the ecological relationship between plant sprouting and seed characteristics in the two functional groups.

2

The sprouting variations of the species were initially examined using pairwise comparisons between natural and disturbed habitats within and across species and were noted to show a continuum in persistence niches across the forest dominants, which may underlie the maintenance of plant diversity. Second, a significantly positive, rather than tradeoff, relationship between sprout number and seed size across species within each of the two functional groups was observed, and an obvious elevational shift with a common slope among the two groups in their natural habitat was examined. The results indicate the following: 1) the relationship of seed size vs. sprouts in the natural habitat is more likely to be bet-hedging among species within a guild in a forest; 2) climax species tend to choose seeding rather than sprouting regeneration, and vice versa for the long-lived pioneers; and 3) the negative correlation between sprouting and seed dispersal under disturbed conditions may imply a tradeoff between dispersal and persistence in situ during the process of plant regeneration.

3

These findings may be of potential significance for urban greening using native species.  相似文献   

8.
A variety of environmental processes, including topography, edaphic and disturbance factors can influence vegetation composition. The relative influence of these patterns has been known to vary with scale, however, few studies have focused on environmental drivers of composition at the mesoscale. This study examined the relative importance of topography, catchment flow and soil in influencing tree assemblages in Karawatha Forest Park; a South-East Queensland subtropical eucalypt forest embedded in an urban matrix that is part of the Terrestrial Ecosystem Research Network South-East Queensland Peri-urban SuperSite. Thirty-three LTER plots were surveyed at the mesoscale (909 ha), where all woody stems ≥1.3 m high rooted within plots were sampled. Vegetation was divided into three cohorts: small (≥1–10 cm DBH), intermediate (≥10–30 cm DBH), and large (≥30 cm DBH). Plot slope, aspect, elevation, catchment area and location and soil chemistry and structure were also measured. Ordinations and smooth surface modelling were used to determine drivers of vegetation assemblage in each cohort. Vegetation composition was highly variable among plots at the mesoscale (plots systematically placed at 500 m intervals). Elevation was strongly related to woody vegetation composition across all cohorts (R2: 0.69–0.75). Other topographic variables that explained a substantial amount of variation in composition were catchment area (R2: 0.43–0.45) and slope (R2: 0.23–0.61). Soil chemistry (R2: 0.09–0.75) was also associated with woody vegetation composition. While species composition differed substantially between cohorts, the environmental variables explaining composition did not. These results demonstrate the overriding importance of elevation and other topographic features in discriminating tree assemblage patterns irrespective of tree size. The importance of soil characteristics to tree assemblages was also influenced by topography, where ridge top sites were typically drier and had lower soil nutrient levels than riparian areas.  相似文献   

9.
Zhou  Tianyang  Zhang  Jiaxin  Qin  Yuanzhi  Zhou  Gang  Wang  Congrong  Xu  Yaozhan  Fei  Yanan  Qiao  Xiujuan  Jiang  Mingxi 《Ecosystems》2023,26(4):740-751
Ecosystems - The relationships between biodiversity and community stability have been well-documented in grassland ecosystems, yet the diversity–stability relationship and the mechanisms...  相似文献   

10.
This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.  相似文献   

11.
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.  相似文献   

12.
Our understanding of the effects of tropical cyclones on species composition and dynamics of forest communities is mainly derived from studies that have considered single cyclonic events. Here we examined changes in the tree species and functional trait composition in an 8-ha Dipterocarp forest at Palanan in the northeastern Philippines that is subject to a high frequency of cyclonic disturbance (1–4 cyclones annually). The plot has been censused four times over a 16-year interval allowing us to consider the medium-term forest dynamics in response to repeated cyclones. We hypothesized that as the forest community in Palanan has been selected under frequent disturbance by cyclones, it should show little functional change across the census intervals. We analyzed changes in demography, species composition, and community-weighted functional traits (specific leaf area, leaf area, wood density, and specific growth rate) across the censuses and compared these against cyclone intensities during the census intervals. Demographic changes across census years suggest that the community responded to cyclonic disturbances through substantial turnover in the small- and medium-size individuals, and that there has been an increase in plot-level stem density and basal area across the measured period. Trait compositional changes from 1994 to 2010 were mostly small, but indicate a shift towards species with larger leaves and faster growth rates—traits that are associated with fast recovery after disturbance. These changes all coincide with a large intense cyclone between the second and third censuses, suggesting that cyclone strength, more than cyclone frequency, affects this forest.  相似文献   

13.
以中国北亚热带退化灌木林改造而来的木荷-青冈栎混交林和杜英纯林为对象,研究树种组成对常绿阔叶人工林生态系统碳储量的影响。结果表明:(1)退化灌木林改造成两种人工林生长11年后,生态系统植被、土壤碳储量均显著增加;植被碳储量的增加主要来自乔木层。(2)两种人工林碳积累能力有差异。杜英林植被碳储量比木荷-青冈栎林高99.4%,其中杜英林的乔木层碳储量比木荷-青冈栎林高27.75t·hm-2,是后者的2倍;杜英林土壤有机碳储量(0~50cm)显著高于木荷-青冈栎林10.17t·hm-2,其中在0~10、20~30cm土层杜英林均显著高于木荷-青冈栎林。研究表明,退化灌木林人工改造成常绿阔叶林后生态系统碳储量显著增加,杜英纯林碳蓄积能力明显高于木荷-青冈栎混交林,说明在以增加碳储量为目的的退化生态系统改造过程中,树种选择非常重要。  相似文献   

14.
In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80°C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90°C, and a Chloroflexus mat is formed at 65 to 70°C. We have studied the microbial diversity of one sulfur mat (high-sulfide) hot spring and one Chloroflexus mat (low-sulfide) hot spring by cloning and sequencing of small-subunit rRNA genes obtained by PCR amplification from mat DNA. Using 98% sequence identity as a cutoff value, a total of 14 bacterial operational taxonomic units (OTUs) and 5 archaeal OTUs were detected in the sulfur mat; 18 bacterial OTUs were detected in the Chloroflexus mat. Although representatives of novel divisions were found, the majority of the sequences were >95% related to currently known sequences. The molecular diversity analysis showed that Chloroflexus was the dominant mat organism in the low-sulfide spring (1 mg liter−1) below 70°C, whereas Aquificales were dominant in the high-sulfide spring (12 mg liter−1) at the same temperature. Comparison of the present data to published data indicated that there is a relationship between mat type and composition of Aquificales on the one hand and temperature and sulfide concentration on the other hand.  相似文献   

15.
Ecosystems - Subtropical and tropical forests account for over 50% of soil CO2 production, 47% of N2O fluxes of natural ecosystems, and act as both significant sources and sinks of atmospheric CH4....  相似文献   

16.
Leaffall phenology is an important periodical event in forests, contributing to mobilization of organic matter from primary producers to soil. For seasonal forests, leaffall periodicity has been related to rainfall regime and dry season length. In weakly seasonal forests, where there is no marked dry season, other climatic factors could trigger leaf shed. In this study, we aimed to determine if other climatic variables (wind speed, solar radiation, photosynthetic photon flux density [PPFD], day length, temperature, and relative humidity) could be better correlated with patterns of litter and leaffall in a weakly seasonal subtropical wet forest in Puerto Rico. Leaffall patterns were correlated mainly with solar radiation, PPFD, day length, and temperature; and secondarily with rainfall. Two main peaks of leaffall were observed: April–June and August–September, coinciding with the periods of major solar radiation at this latitude. Community leaffall patterns were the result of overlapping peaks of individual species. Of the 32 species analyzed, 21 showed phenological patterns, either unimodal (16 species), bimodal (three species), or multimodal (two species). Lianas also presented leaffall seasonality, suggesting that they are subject to the same constraints and triggering factors affecting trees. In addition to solar radiation as a main determinant of leaffall timing in tropical forests, our findings highlight the importance of interannual variation and asynchrony, suggesting that leaffall is the result of a complex interaction between environmental and physiological factors.  相似文献   

17.
Photosynthetic response of seedlings of two evergreen trees dorminant in a subtropical forest to long-term elevated CO2 were studied. Pot seedlings of Castanopsis fissa (Champ.) Rehd. et Wils. and Schima superba Gardn. et Champ. were grown in semi-open chambers with ambient (350 μL · L-1) CO2 concentration under natural light from June to September, 1993. Net photosynthetic rate of the plants exposed to elevated CO2 increased by 79%~95% than that of the plants in ambient CO2 atmosphere. But no significant difference was observed when measurement was done at either CO2 concentration, 350 μL · L-1 or 500 μL · L-1 The Ph-CO2 concen/ration response curves of plants growing in elevated CO2 were higher than that of plants growing in ambient (350μL · L-1 CO2). In addition, the chlorophyll and carotenoid contents dropped slightly and stomatal conductance decreased obviously under elevated atmospheric CO2, while the ratios of chlorophyll a to b and carotenoid to chlorophyll were unaltered. The results indicated that downward acclimation of phetosynthesis did not appear in both plant species when they were grown under prolonged exposure to high (500 μL · L-1) atmospheric CO2.  相似文献   

18.
Studies on seed germination and seedling development of Ormosia glaberrima Wu, Ouercus hui Chun, Diospyros morrisiana Hance, Oroxylum indicum (L.) Vent., Toona sinensis (A. Tuss. ) Roem. and Paulownia fortunei (Seem.) Hemsl. revealed that had rapid germination but Ormosia glaberrirna. Germination began 2--3 days and ceased 2—4 weeks after the initiation of the experiment. Fast-growing sun trees Oroxylum indicurn, T. sinensis, and P. fortunei germinated faster than did the species in the forest. Germination of Oroxylum glaberrirna was delayed because of its hard seed coat, but became rapid when its coat was slit open. Species in the forest and Oroxylurn indicurn and T. sinensis could germinate in both dark and light, tiny seeds of P. fortunei germinated poorly in dark. Water absorption of seeds presented three phases which varied among the species. Morphology of the seedlings might be related to shading-tolerance and growth speed of species.  相似文献   

19.
该研究以鄂西南木林子国家级自然保护区内天然林为研究对象,以森林内胸径≥5 cm的乔木个体为具体分析对象,通过乔木树种重要值及其角尺度、大小比、混交度等林分空间结构参数的一元分布,阐述林分空间分布格局、大小分化程度、林木混交程度及变化,并通过分析林分空间结构参数的二元分布,探究各参数之间的联系,揭示5年间其林分空间结构特...  相似文献   

20.
对韶关市公益林乔木层的优势树种和龄组的碳储量、碳密度和碳汇量进行分析。结果表明,韶关公益林乔木林碳储量为190.06 Tg,固碳总量优势树种以阔叶林为主,龄组以中幼林为主;平均碳密度为34.73 t·hm–2,随着龄组增加,树种的碳密度普遍呈增加趋势;公益林乔木林碳汇量为23.90万t·a–1,以中幼林的碳汇为主。提高阔叶林和中幼龄树种的单位面积蓄积量,是增加公益林有机碳储量和碳汇功能的主要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号