首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
2.
Biochemical controls that regulate the biosynthesis of poly-3-hydroxybutyrate (PHB) were investigated in Rhizobium (Cicer) sp. strain CC 1192. This species is of interest for studying PHB synthesis because the polymer accumulates to a large extent in free-living cells but not in bacteroids during nitrogen-fixing symbiosis with chickpea (Cicer arietinum L.) plants. Evidence is presented that indicates that CC 1192 cells retain the enzymic capacity to synthesize PHB when they differentiate from the free-living state to the bacteroid state. This evidence includes the incorporation by CC 1192 bacteroids of radiolabel from [14C]malate into 3-hydroxybutyrate which was derived by chemically degrading insoluble material from bacteroid pellets. Furthermore, the presence of an NADPH-dependent acetoacetyl coenzyme A (CoA) reductase, which was specific for R-(−)-3-hydroxybutyryl-CoA and NADP+ in the oxidative direction, was demonstrated in extracts from free-living and bacteroid cells of CC 1192. Activity of this enzyme in the reductive direction appeared to be regulated at the biochemical level mainly by the availability of substrates. The CC 1192 cells also contained an NADH-specific acetoacetyl-CoA reductase which oxidized S-(+)-3-hydroxybutyryl-CoA. A membrane preparation from CC 1192 bacteroids readily oxidized NADH but not NADPH, which is suggested to be a major source of reductant for nitrogenase. Thus, a high ratio of NADPH to NADP+, which could enhance delivery of reductant to nitrogenase, could also favor the reduction of acetoacetyl-CoA for PHB synthesis. This would mean that fine controls that regulate the partitioning of acetyl-CoA between citrate synthase and 3-ketothiolase are important in determining whether PHB accumulates.  相似文献   

3.
Bacterial coenzyme B12-dependent 2-hydroxyisobutyryl-CoA mutase (HCM) is a radical enzyme catalyzing the stereospecific interconversion of (S)-3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA. It consists of two subunits, HcmA and HcmB. To characterize the determinants of substrate specificity, we have analyzed the crystal structure of HCM from Aquincola tertiaricarbonis in complex with coenzyme B12 and the substrates (S)-3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in alternative binding. When compared with the well studied structure of bacterial and mitochondrial B12-dependent methylmalonyl-CoA mutase (MCM), HCM has a highly conserved domain architecture. However, inspection of the substrate binding site identified amino acid residues not present in MCM, namely HcmA IleA90 and AspA117. AspA117 determines the orientation of the hydroxyl group of the acyl-CoA esters by H-bond formation, thus determining stereospecificity of catalysis. Accordingly, HcmA D117A and D117V mutations resulted in significantly increased activity toward (R)-3-hydroxybutyryl-CoA. Besides interconversion of hydroxylated acyl-CoA esters, wild-type HCM as well as HcmA I90V and I90A mutant enzymes could also isomerize pivalyl- and isovaleryl-CoA, albeit at >10 times lower rates than the favorite substrate (S)-3-hydroxybutyryl-CoA. The nonconservative mutation HcmA D117V, however, resulted in an enzyme showing high activity toward pivalyl-CoA. Structural requirements for binding and isomerization of highly branched acyl-CoA substrates such as 2-hydroxyisobutyryl- and pivalyl-CoA, possessing tertiary and quaternary carbon atoms, respectively, are discussed.  相似文献   

4.
Dyadobacter tibetensis Y620-1 is the type strain of the species Dyadobacter tibetensis, isolated from ice at a depth of 59 m from a high altitude glacier in China (5670 m above sea level). It is psychrotolerant with growth temperature ranges of 4 to 35°C. Here we describe the features of this organism, together with the draft genome sequence and annotation. The 5,313,963 bp long genome contains 4,828 protein-coding genes and 39 RNA genes. To the best of our knowledge, this is the first Dyadobacter strain that was isolated from glacial ice. This study provides genetic information of this organism to identify the genes linked to its specific mechanisms for adaption to extreme glacial environment.  相似文献   

5.
Salipiger mucosus Martínez-Cànovas et al. 2004 is the type species of the genus Salipiger, a moderately halophilic and exopolysaccharide-producing representative of the Roseobacter lineage within the alphaproteobacterial family Rhodobacteraceae. Members of this family were shown to be the most abundant bacteria especially in coastal and polar waters, but were also found in microbial mats and sediments. Here we describe the features of the S. mucosus strain DSM 16094T together with its genome sequence and annotation. The 5,689,389-bp genome sequence consists of one chromosome and several extrachromosomal elements. It contains 5,650 protein-coding genes and 95 RNA genes. The genome of S. mucosus DSM 16094T was sequenced as part of the activities of the Transregional Collaborative Research Center 51 (TRR51) funded by the German Research Foundation (DFG).  相似文献   

6.
Labrenzia alexandrii Biebl et al. 2007 is a marine member of the family Rhodobacteraceae in the order Rhodobacterales, which has thus far only partially been characterized at the genome level. The bacterium is of interest because it lives in close association with the toxic dinoflagellate Alexandrium lusitanicum. Ultrastructural analysis reveals R-bodies within the bacterial cells, which are primarily known from obligate endosymbionts that trigger “killing traits” in ciliates (Paramecium spp.). Genomic traits of L. alexandrii DFL-11T are in accordance with these findings, as they include the reb genes putatively involved in R-body synthesis. Analysis of the two extrachromosomal elements suggests a role in heavy-metal resistance and exopolysaccharide formation, respectively. The 5,461,856 bp long genome with its 5,071 protein-coding and 73 RNA genes consists of one chromosome and two plasmids, and has been sequenced in the context of the Marine Microbial Initiative.  相似文献   

7.
Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).  相似文献   

8.
Anoxybacillus flavithermus subsp. yunnanensis is the only strictly thermophilic bacterium that is able to tolerate a broad range of toxic solvents at its optimal temperature of 55-60°C. The type strain E13T was isolated from water-sediment slurries collected from a hot spring. This study presents the draft genome sequence of A. flavithermus subsp. yunnanensis E13T and its annotation. The 2,838,393bp long genome (67 contigs) contains 3,035 protein-coding genes and 85 RNA genes, including 10 rRNA genes, and no plasmids. The genome information has been used to compare with the genomes from A. flavithermus subsp. flavithermus strains.  相似文献   

9.
Degradation of poly(3-hydroxybutyrate) (PHB) by the thiolytic activity of the PHB depolymerase PhaZ1 from Ralstonia eutropha H16 was analyzed in the presence of different phasins. An Escherichia coli strain was constructed that harbored the genes for PHB synthesis (phaCAB), the phasin PhaP1, and the PHB depolymerase PhaZ1. PHB was isolated in the native form (nPHB) from this recombinant E. coli strain, and the in vitro degradation of the polyester was examined. Degradation resulted in the formation of the expected 3-hydroxybutyryl coenzyme A (3HB-CoA) and in the formation of a second product, which occurred in significantly higher concentrations than 3HB-CoA. This second product was identified by liquid chromatography mass spectrometry (LC-MS) as crotonyl-CoA. Replacement of PhaP1 by PhaP2 or PhaP4 resulted in a lower degradation rate, whereas the absence of the phasins prevented the degradation of nPHB by the PHB depolymerase PhaZ1 almost completely. In addition, the in vitro degradation of nPHB granules isolated from R. eutropha H16 (wild type) and from the R. eutropha ΔphaP1 and ΔphaP1-4 deletion mutants was examined. In contrast to the results obtained with nPHB granules isolated from E. coli, degradation of nPHB granules isolated from the wild type of R. eutropha yielded high concentrations of 3HB-CoA and low concentrations of crotonyl-CoA. The degradation of nPHB granules isolated from the ΔphaP1 and ΔphaP1-4 deletion mutants of R. eutropha was significantly reduced in comparison to that of nPHB granules isolated from wild-type R. eutropha. Stereochemical analyses of 3HB-CoA revealed that the (R) stereoisomer was collected after degradation of granules isolated from E. coli, whereas the (S) stereoisomer was collected after degradation of granules isolated from R. eutropha. Based on these results, a newly observed mechanism in the degradation pathway for PHB in R. eutropha is proposed which is connected by crotonyl-CoA to the β-oxidation cycle. According to this model, the NADPH-dependent synthesis of PHB with (R)-3HB-CoA as the intermediate and the PHB degradation yielding (S)-3HB-CoA, which is further converted in an NAD-dependent reaction, are separated.  相似文献   

10.
Hoeflea phototrophica Biebl et al. 2006 is a member of the family Phyllobacteriaceae in the order Rhizobiales, which is thus far only partially characterized at the genome level. This marine bacterium contains the photosynthesis reaction-center genes pufL and pufM and is of interest because it lives in close association with toxic dinoflagellates such as Prorocentrum lima. The 4,467,792 bp genome (permanent draft sequence) with its 4,296 protein-coding and 69 RNA genes is a part of the Marine Microbial Initiative.  相似文献   

11.
Here, we report a type strain AST-10 representing a novel species Sulfurimonas hongkongensis within Epsilonproteobacteria, which is involved in marine sedimentary sulfur oxidation and denitrification. Strain AST-10T (= DSM 22096T = JCM 18418T) was isolated from the coastal sediment at the Kai Tak Approach Channel connected to Victoria Harbour in Hong Kong. It grew chemolithoautotrophically using thiosulfate, sulfide or hydrogen as the sole electron donor and nitrate as the electron acceptor under anoxic conditions. It was rod-shaped and grew at 15-35°C (optimum at 30°C), pH 6.5-8.5 (optimum at 7.0-7.5), and 10-60 g L-1 NaCl (optimum at 30 g L-1). Genome sequencing and annotation of strain AST-10T showed a 2,302,023 bp genome size, with 34.9% GC content, 2,290 protein-coding genes, and 42 RNA genes, including 3 rRNA genes.  相似文献   

12.
13.
Microvirga lotononidis is a recently described species of root-nodule bacteria that is an effective nitrogen- (N2) fixing microsymbiont of the symbiotically specific African legume Listia angolensis (Welw. ex Bak.) B.-E. van Wyk & Boatwr. M. lotononidis possesses several properties that are unusual in root-nodule bacteria, including pigmentation and the ability to grow at temperatures of up to 45°C. Strain WSM3557T is an aerobic, motile, Gram-negative, non-spore-forming rod isolated from a L. angolensis root nodule collected in Chipata, Zambia in 1963. This is the first report of a complete genome sequence for the genus Microvirga. Here we describe the features of Microvirga lotononidis strain WSM3557T, together with genome sequence information and annotation. The 7,082,538 high-quality-draft genome is arranged in 18 scaffolds of 104 contigs, contains 6,956 protein-coding genes and 84 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

14.
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

15.
Olivibacter sitiensis Ntougias et al. 2007 is a member of the family Sphingobacteriaceae, phylum Bacteroidetes. Members of the genus Olivibacter are phylogenetically diverse and of significant interest. They occur in diverse habitats, such as rhizosphere and contaminated soils, viscous wastes, composts, biofilter clean-up facilities on contaminated sites and cave environments, and they are involved in the degradation of complex and toxic compounds. Here we describe the features of O. sitiensis AW-6T, together with the permanent-draft genome sequence and annotation. The organism was sequenced under the Genomic Encyclopedia for Bacteria and Archaea (GEBA) project at the DOE Joint Genome Institute and is the first genome sequence of a species within the genus Olivibacter. The genome is 5,053,571 bp long and is comprised of 110 scaffolds with an average GC content of 44.61%. Of the 4,565 genes predicted, 4,501 were protein-coding genes and 64 were RNA genes. Most protein-coding genes (68.52%) were assigned to a putative function. The identification of 2-keto-4-pentenoate hydratase/2-oxohepta-3-ene-1,7-dioic acid hydratase-coding genes indicates involvement of this organism in the catechol catabolic pathway. In addition, genes encoding for β-1,4-xylanases and β-1,4-xylosidases reveal the xylanolytic action of O. sitiensis.  相似文献   

16.
17.
Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16’s C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L?1 and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 μmol g?1 h?1, respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.  相似文献   

18.
Thermovibrio ammonificans type strain HB-1T is a thermophilic (Topt: 75°C), strictly anaerobic, chemolithoautotrophic bacterium that was isolated from an active, high temperature deep-sea hydrothermal vent on the East Pacific Rise. This organism grows on mineral salts medium in the presence of CO2/H2, using NO3- or S0 as electron acceptors, which are reduced to ammonium or hydrogen sulfide, respectively. T. ammonificans is one of only three species within the genus Thermovibrio, a member of the family Desulfurobacteriaceae, and it forms a deep branch within the phylum Aquificae. Here we report the main features of the genome of T. ammonificans strain HB-1T (DSM 15698T).  相似文献   

19.
Roseibacterium elongatum Suzuki et al. 2006 is a pink-pigmented and bacteriochlorophyll a-producing representative of the Roseobacter group within the alphaproteobacterial family Rhodobacteraceae. Representatives of the marine ‘Roseobacter group’ were found to be abundant in the ocean and play an important role in global and biogeochemical processes. In the present study we describe the features of R. elongatum strain OCh 323T together with its genome sequence and annotation. The 3,555,102 bp long genome consists of one circular chromosome with no extrachromosomal elements and is one of the smallest known Roseobacter genomes. It contains 3,540 protein-coding genes and 59 RNA genes. Genome analysis revealed the presence of a photosynthetic gene cluster, which putatively enables a photoheterotrophic lifestyle. Gene sequences associated with quorum sensing, motility, surface attachment, and thiosulfate and carbon monoxide oxidation could be detected. The genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 (TRR51) funded by the German Research Foundation (DFG).  相似文献   

20.
Halopiger goleamassiliensis strain IIH3T sp. nov. is a novel, extremely halophilic archaeon within the genus Halopiger. This strain was isolated from an evaporitic sediment in El Golea Lake, Ghardaïa region (Algeria). The type strain is strain IIH3T. H. goleamassiliensis is moderately thermophilic, neutrophilic, non-motile and coccus-shaped. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,906,923 bp long genome contains 3,854 protein-encoding genes and 49 RNA genes (1 gene is 16S rRNA, 1 gene is 23S rRNA, 3 genes are 5S rRNA, and 44 are tRNA genes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号