首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm capacitation is a maturation step that is deemed to be essential for sperm to fertilize an oocyte. A family of proteins, the binder of sperm (BSP), are known to bind choline phospholipids on sperm membranes and promote capacitation in bulls and boars. Recently, BSP-homologous genes have been identified in the epididymal tissues of human (BSPH1) and mouse (Bsph1, Bsph2). The aim of this study was to determine the binding characteristics of the murine binder of sperm protein homolog 1 (BSPH1) and evaluate its effects on sperm capacitation. Since it is not possible to purify the native BSP proteins from human and mouse in sufficient quantity, a murine recombinant BSPH1 (rec-BSPH1) was produced and used for the functional studies. Similarly to BSP proteins from other species, rec-BSPH1 bound to gelatin, heparin, phosphatidylcholine liposomes, and sperm. Both native BSPH1 and rec-BSPH1 were detected on the head and the midpiece region of sperm, although a stronger signal was detected on the midpiece region when sperm were incubated in a capacitating media containing bovine serum albumin. More importantly, murine rec-BSPH1 was able to capacitate sperm, but was unable to induce the acrosome reaction. These results show that murine epididymal BSPH1 shares many biochemical and functional characteristics with BSP proteins secreted by seminal vesicles of ungulates, and suggest that it might play a similar role in sperm functions.  相似文献   

2.
Cryopreservation causes sub-lethal damage which limits the fertility of frozen thawed spermatozoa. Seminal plasma has been investigated as a cryoprotectant, but has yielded inconsistent results due to considerable variation in its constituents. Individual seminal plasma proteins offer an ideal alternative to whole seminal plasma, and several have been correlated with freezing success. Binder of Sperm Proteins (BSPs) are abundant ram seminal plasma proteins which have been suggested to have significant protective effects on ram spermatozoa during cold shock. This is in direct opposition to bull spermatozoa, where BSPs cause sperm deterioration during in vitro handling. We investigated the potential of BSP1 and BSP5 to prevent freezing associated damage to important functional parameters of ram spermatozoa. BSPs purified by size exclusion chromatography improved post thaw motility and penetration through artificial mucus. Highly purified BSP1 and BSP5, isolated by gelatin affinity and RP-HPLC, improved motility and membrane integrity, and reduced post thaw protein tyrosine phosphorylation. Exposure to BSP5 before freezing increased the amount of phosphatidylethanolamine on the sperm surface after thawing. Neither BSP1 nor BSP5 prevented freezing associated changes in membrane lipid disorder. These results suggest that BSPs may significantly improve freezing outcomes of ram spermatozoa.  相似文献   

3.
Kinesin superfamily proteins (KIFs) are key players or 'hub' proteins in the intracellular transport system, which is essential for cellular function and morphology. The KIF superfamily is also the first large protein family in mammals whose constituents have been completely identified and confirmed both in silico and in vivo. Numerous studies have revealed the structures and functions of individual family members; however, the relationships between members or a perspective of the whole superfamily structure until recently remained elusive. Here, we present a comprehensive summary based on a large, systematic phylogenetic analysis of the kinesin superfamily. All available sequences in public databases, including genomic information from all model organisms, were analyzed to yield the most complete phylogenetic kinesin tree thus far, comprising 14 families. This comprehensive classification builds on the recently proposed standardized nomenclature for kinesins and allows systematic analysis of the structural and functional relationships within the kinesin superfamily.  相似文献   

4.
Saliva influences rumen function in cattle, yet the biochemical role for most of the bovine salivary proteins (BSPs) has yet to be established. Two cDNAs (BSP30a and BSP30b) from bovine parotid salivary gland were cloned and sequenced, each coding for alternate forms of a prominent protein in bovine saliva. The BSP30 cDNAs share 96% sequence identity with each other at the DNA level and 83% at the amino acid level, and appear to arise from separate genes. The predicted BSP30a and BSP30b proteins share 26-36% amino acid identity with parotid secretory protein (PSP) from mouse, rat and human. BSP30 and PSP are in turn more distantly related to a wider group of proteins that includes lung-specific X protein, also known as palate, lung, and nasal epithelium clone (LUNX/PLUNC), von Ebner's minor salivary gland protein (VEMSGP), bactericidal permeability increasing protein (BPI), lipopolysaccharide binding protein (LBP), cholesteryl ester transfer protein (CETP), and the putative olfactory ligand-binding proteins RYA3 and RY2G5. Bovine cDNAs encoding homologs of LUNX/PLUNC and VEMSGP were isolated and sequenced. Northern blot analysis showed that LUNX/PLUNC, BSP30 and VEMSGP are expressed in bovine salivary tissue and airways, and that they have non-identical patterns of expression in these tissues. The expression of both BSP30a and BSP30b is restricted to salivary tissue, but within this tissue they have distinct patterns of expression. The proximity of the human genes coding for the PSP/LBP superfamily on HSA20q11.2, their similar amino acid sequence, and common exon segmentation strongly suggest that these genes evolved from a common ancestral gene. Furthermore, they imply that the BSP30a and BSP30b proteins may have a function in common with other members of this gene family.  相似文献   

5.
The cadherin superfamily is a large protein family with diverse structures and functions. Because of this diversity and the growing biological interest in cell adhesion and signaling processes, in which many members of the cadherin superfamily play a crucial role, it is becoming increasingly important to develop tools to manage, distribute and analyze sequences in this protein family. Current profile and motif databases classify protein sequences into a broad spectrum of protein superfamilies, however to provide a more specific functional annotation, the next step should include classification of subfamilies of these protein superfamilies. Here, we present a tool that classified greater than 90% of the proteins belonging to the cadherin superfamily found in the SWISS PROT database. Therefore, for most members of the cadherin superfamily, this tool can assist in adding more specific functional annotations than can be achieved with current profile and motif databases. Finally, the classification tool and the results of our analysis were integrated into a web-accessible database (http://calcium.uhnres. utoronto.ca/cadherin).  相似文献   

6.
Cytochrome P450 (CYP) proteins compose a highly diverse superfamily found in all domains of life. These proteins are enzymes involved in metabolism of endogenous and exogenous compounds. In vertebrates, the CYP2 family is one of the largest, most diverse and plays an important role in mammalian drug metabolism. However, there are more than 20 vertebrate CYP2 subfamilies with uncertain evolution and fairly discrete subfamily composition within vertebrate classes, hindering extrapolation of knowledge across subfamilies. To better understand CYP2 diversity, a phylogenetic analysis of 196 CYP2 protein sequences from 16 species was performed using a maximum likelihood approach and Bayesian inference. The analyses included the CYP2 compliment from human, fugu, zebrafish, stickleback, medaka, cow, and dog genomes. Additional sequences were included from rabbit, marsupial, platypus, chicken, frog, and salmonid species. Three CYP2 sequences from the tunicate Ciona intestinalis were utilized as the outgroup. Results indicate a single ancestral vertebrate CYP2 gene and monophyly of all CYP2 subfamilies. Two subfamilies (CYP2R and CYP2U) pre-date vertebrate diversification, allowing direct comparison across vertebrate classes, while all other subfamilies originated during vertebrate diversification, often within specific vertebrate lineages. Analysis of site-specific evolution indicates that some substrate recognition sites (SRS) previously proposed for CYP genes do not have elevated rates of evolution, suggesting that these regions of the protein are not necessarily important in recognition of CYP2 substrates. Type II functional divergence analysis identified multiple residues in the active site of CYP2F, CYP2A, and CYP2B proteins that have undergone radical biochemical changes and may be functionally important.  相似文献   

7.
In previous studies we have shown that seminal plasma (SP) proteins can prevent and repair cold-shock membrane damage to ram spermatozoa. Three proteins of approximately 14, 20 and 22 kDa, mainly responsible for this protective ability, were identified in ram SP. They are exclusively synthesized in the seminal vesicles and, consequently, named RSVP14, RSVP20 and RSVP22. The aim of this study is to characterize and express the RSVP14 gene to provide new insights into the mechanisms through which SP proteins are able to protect spermatozoa. Additionally, a first approach has been made to the recombinant protein production. The cDNA sequence obtained encodes a 129 amino acid chain and presents a 25-amino acid signal peptide, one potential O-linked glycosylation site and seven phosphorylation sites on tyrosine, serine and threonine residues. The sequence contains two FN-2 domains, the signature characteristic of the bovine seminal plasma (BSP) protein family and related proteins of different species. More interestingly, it was shown that RSVP14 contains four disulphide bonds and a cholesterol recognition/interaction amino acid consensus (CRAC) domain, also found in BSP and similar proteins. Analysis of the relationships between RSVP14 and other mammalian SP proteins revealed a 76–85% identity, particularly with the BSP protein family. The recombinant protein was obtained in insect cell extracts and in Escherichia coli in which RSVP14 was detected in both the pellet and the supernatant. The results obtained corroborate the role of RSVP14 in capacitation and might explain its protective effect against cold-shock injury to the membranes of ram spermatozoa. Furthermore, the biochemical and functional similarities between RSVP14 and BSP proteins suggest that it might play a similar role in sperm functionality.  相似文献   

8.
ChrA is a membrane protein that confers resistance to the toxic ion chromate through the energy-dependent chromate efflux from the cytoplasm. In the protein databases, ChrA is a member of the chromate ion transporter (CHR) superfamily, composed of at least several dozens of members, distributed in the three domains of life. The aim of this work was to perform a phylogenetic analysis of the CHR superfamily. An exhaustive search for ChrA homologous proteins was carried out at the National Center for Biotechnology Information database. One hundred and thirty-five sequences were identified as members of the CHR superfamily [77 long-chain sequences, or bidomains (LCHR), and 58 short-chain sequences, or monodomains (SCHR)], organized mainly as tandem pairs of genes whose resultant proteins probably possess oppositely oriented membrane topology. LCHR sequences were split into amino and carboxyl domains, and the resultant domains were aligned with the SCHR proteins. A phylogenetic tree was reconstructed using four different methods, obtaining similar results. The domains were grouped into three clusters: the SCHR proteins cluster, the amino domain cluster of LCHR proteins and the carboxyl domain cluster of LCHR proteins. These results, as well as differences in the genomic context of CHR proteins, enabled the proteins to be sorted into two families (SCHR and LCHR), and 10 subfamilies. Evidence was found suggesting an ancient origin of LCHR proteins from the fusion of two SCHR protein-encoding genes; however, some secondary events of fusion and fission may have occurred later. The separate distribution of the LCHR and SCHR proteins, differences in the genomic context in both groups and the fact that chromate transport has been demonstrated only in LCHR proteins suggest that the CHR proteins comprise two or more paralogous groups in the CHR superfamily.  相似文献   

9.
Over the past 60 years, egg yolk (EY) has been routinely used in both liquid semen extenders and those used to cryopreserve sperm. However, the mechanism by which EY protects sperm during liquid storage or from freezing damage is unknown. Bovine seminal plasma contains a family of proteins designated BSP-A1/-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins). These proteins are secretory products of seminal vesicles that are acquired by sperm at ejaculation, modifying the sperm membrane by inducing cholesterol efflux. Because cholesterol efflux is time and concentration dependent, continuous exposure to seminal plasma (SP) that contains BSP proteins may be detrimental to the sperm membrane, which may adversely affect the ability of sperm to be preserved. In this article, we show that the BSP proteins bind to the low-density fraction (LDF), a lipoprotein component of the EY extender. The binding is rapid, specific, saturable, and stable even after freeze-thawing of semen. Furthermore, LDF has a very high capacity for BSP protein binding. The binding of BSP proteins to LDF may prevent their detrimental effect on sperm membrane, and this may be crucial for sperm storage. Thus, we propose that the sequestration of BSP proteins of SP by LDF may represent the major mechanism of sperm protection by EY.  相似文献   

10.
On ejaculation, sperm become coated with proteins secreted by the male accessory sex glands. In the bull, these proteins consist predominantly of the bovine seminal plasma family of proteins (BSPs): PDC-109 (BSP-A1/-A2), BSP-A3, and BSP-30-kDa. PDC-109 plays a role in forming an oviductal sperm reservoir by enabling sperm to bind to oviductal epithelium. Because PDC-109 has high sequence identity with the other BSPs, we tested BSP-A3 and BSP-30-kDa for the capacity to bind sperm to oviductal epithelium. BSP-A3 and BSP-30-kDa each increased binding of epididymal sperm to epithelium and were as effective as PDC-109 in competitively inhibiting binding of ejaculated sperm. Because binding extends the motile life of sperm, BSPs were tested for the ability to maintain sperm motility. BSP-treated epididymal sperm incubated with plasma membrane vesicles from bovine oviductal epithelium maintained progressive motility longer than untreated sperm. To our knowledge, this is the first report of this protective effect of BSPs. Similarities in function among the BSPs were reflected in their three-dimensional structure, whereas surface maps of electrostatic potential indicated differences in binding affinities and kinetics. Such differences may provide sperm with greater adaptability to variations among females. Altogether, these results indicate that BSPs play a crucial role in fertilization by maintaining sperm motility during storage.  相似文献   

11.
12.

Background

The major birch pollen allergen, Bet v 1, is a member of the ubiquitous PR-10 family of plant pathogenesis-related proteins. In recent years, a number of diverse plant proteins with low sequence similarity to Bet v 1 was identified. In addition, determination of the Bet v 1 structure revealed the existence of a large superfamily of structurally related proteins. In this study, we aimed to identify and classify all Bet v 1-related structures from the Protein Data Bank and all Bet v 1-related sequences from the Uniprot database.

Results

Structural comparisons of representative members of already known protein families structurally related to Bet v 1 with all entries of the Protein Data Bank yielded 47 structures with non-identical sequences. They were classified into eleven families, five of which were newly identified and not included in the Structural Classification of Proteins database release 1.71. The taxonomic distribution of these families extracted from the Pfam protein family database showed that members of the polyketide cyclase family and the activator of Hsp90 ATPase homologue 1 family were distributed among all three superkingdoms, while members of some bacterial families were confined to a small number of species. Comparison of ligand binding activities of Bet v 1-like superfamily members revealed that their functions were related to binding and metabolism of large, hydrophobic compounds such as lipids, hormones, and antibiotics. Phylogenetic relationships within the Bet v 1 family, defined as the group of proteins with significant sequence similarity to Bet v 1, were determined by aligning 264 Bet v 1-related sequences. A distance-based phylogenetic tree yielded a classification into 11 subfamilies, nine exclusively containing plant sequences and two subfamilies of bacterial proteins. Plant sequences included the pathogenesis-related proteins 10, the major latex proteins/ripening-related proteins subfamily, and polyketide cyclase-like sequences.

Conclusion

The ubiquitous distribution of Bet v 1-related proteins among all superkingdoms suggests that a Bet v 1-like protein was already present in the last universal common ancestor. During evolution, this protein diversified into numerous families with low sequence similarity but with a common fold that succeeded as a versatile scaffold for binding of bulky ligands.  相似文献   

13.
Aquaporins constitute a large and highly divergent protein family in maize   总被引:54,自引:0,他引:54  
Aquaporins (AQPs) are an ancient family of channel proteins that transport water and neutral solutes through a pore and are found in all eukaryotes and most prokaryotes. A comparison of the amino acid sequences and phylogenetic analysis of 31 full-length cDNAs of maize (Zea mays) AQPs shows that they comprise four different groups of highly divergent proteins. We have classified them as plasma membrane intinsic proteins (PIPs), tonoplast intrinsic proteins, Nod26-like intrinsic proteins, and small and basic intrinsic proteins. Amino acid sequence identities vary from 16% to 100%, but all sequences share structural motifs and conserved amino acids necessary to stabilize the two loops that form the aqueous pore. Most divergent are the small and basic integral proteins in which the first of the two highly conserved Asn-Pro-Ala motifs of the pore is not conserved, but is represented by alanine-proline-threonine or alanine-proline-serine. We present a model of ZmPIP1-2 based on the three-dimensional structure of mammalian AQP1. Tabulation of the number of times that the AQP sequences are found in a collection of databases that comprises about 470,000 maize cDNAs indicates that a few of the maize AQPs are very highly expressed and many are not abundantly expressed. The phylogenetic analysis supports the interpretation that the divergence of PIPs through gene duplication occurred more recently than the divergence of the members of the other three subfamilies. This study opens the way to analyze the function of the proteins in Xenopus laevis oocytes, determine the tissue specific expression of the genes, recover insertion mutants, and determine the in planta function.  相似文献   

14.
Probing the S100 protein family through genomic and functional analysis   总被引:8,自引:0,他引:8  
The EF-hand superfamily of calcium binding proteins includes the S100, calcium binding protein, and troponin subfamilies. This study represents a genome, structure, and expression analysis of the S100 protein family, in mouse, human, and rat. We confirm the high level of conservation between mammalian sequences but show that four members, including S100A12, are present only in the human genome. We describe three new members of the S100 family in the three species and their locations within the S100 genomic clusters and propose a revised nomenclature and phylogenetic relationship between members of the EF-hand superfamily. Two of the three new genes were induced in bone-marrow-derived macrophages activated with bacterial lipopolysaccharide, suggesting a role in inflammation. Normal human and murine tissue distribution profiles indicate that some members of the family are expressed in a specific manner, whereas others are more ubiquitous. Structure-function analysis of the chemotactic properties of murine S100A8 and human S100A12, particularly within the active hinge domain, suggests that the human protein is the functional homolog of the murine protein. Strong similarities between the promoter regions of human S100A12 and murine S100A8 support this possibility. This study provides insights into the possible processes of evolution of the EF-hand protein superfamily. Evolution of the S100 proteins appears to have occurred in a modular fashion, also seen in other protein families such as the C2H2-type zinc-finger family.  相似文献   

15.
A family of proteins designated BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa, collectively called BSP (bovine seminal plasma) proteins, constitute the major protein fraction of bull seminal plasma. BSP proteins can stimulate sperm capacitation by inducing cholesterol and phospholipid efflux from sperm. Boar seminal plasma contains one homologous protein of the BSP family, named pB1; however, its physiological role is still unknown. In the current study, we report a novel method to purify pB1 from boar seminal plasma by chondroitin sulfate B-affinity chromatography and reverse-phase-high performance liquid chromatography. We also studied the effect of pB1, BSP-A1/-A2, and whole boar seminal plasma on boar sperm capacitation. Boar epididymal sperm were washed, preincubated in noncapacitating medium containing pB1 (0, 2.5, 5, 10 or 20 microg/ml), BSP-A1/-A2 (0 or 20 microg/ml) proteins, or whole seminal plasma (0, 250, 500, or 1000 microg/ml), then washed and incubated in capacitating medium. Acrosomal integrity was assessed by chlortetracycline staining. The status of sperm capacitation was evaluated by the capacity of sperm to undergo the acrosome reaction initiated by the addition of the calcium ionophore, A23187. The pB1 and BSP-A1/-A2 proteins increased epididymal sperm capacitation as compared with control (sperm preincubated without proteins). This effect reached a maximum level at 10 microg/ml pB1 and at 20 microg/ml BSP-A1/-A2 (2.3- and 2.2-fold higher than control, respectively). Whole boar seminal plasma did not induce sperm capacitation. In addition, pB1 bound to boar epididymal sperm and was lost during capacitation. These results indicate that BSP proteins and their homologs in other species induce sperm capacitation in a similar way.  相似文献   

16.
AAA ATPases form a large protein family with manifold cellular roles. They belong to the AAA+ superfamily of ringshaped P-loop NTPases, which exert their activity through the energy-dependent unfolding of macromolecules. Phylogenetic analyses have suggested the existence of five major clades of AAA domains (proteasome subunits, metalloproteases, domains D1 and D2 of ATPases with two AAA domains, and the MSP1/katanin/spastin group), as well as a number of deeply branching minor clades. These analyses however have been characterized by a lack of consistency in defining the boundaries of the AAA family. We have used cluster analysis to delineate unambiguously the group of AAA sequences within the AAA+ superfamily. Phylogenetic and cluster analysis of this sequence set revealed the existence of a sixth major AAA clade, comprising the mitochondrial, membrane-bound protein BCS1 and its homologues. In addition, we identified several deep branches consisting mainly of hypothetical proteins resulting from genomic projects. Analysis of the AAA N-domains provided direct support for the obtained phylogeny for most branches, but revealed some deep splits that had not been apparent from phylogenetic analysis and some unexpected similarities between distant clades. It also revealed highly degenerate D1 domains in plant MSP1 sequences and in at least one deeply branching group of hypothetical proteins (YC46), showing that AAA proteins with two ATPase domains arose at least three times independently.  相似文献   

17.
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c 2-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences.  相似文献   

18.
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.  相似文献   

19.
A comprehensive, structural and functional, in silico analysis of the medium-chain dehydrogenase/reductase (MDR) superfamily, including 583 proteins, was carried out by use of extensive database mining and the blastp program in an iterative manner to identify all known members of the superfamily. Based on phylogenetic, sequence, and functional similarities, the protein members of the MDR superfamily were classified into three different taxonomic categories: (a) subfamilies, consisting of a closed group containing a set of ideally orthologous proteins that perform the same function; (b) families, each comprising a cluster of monophyletic subfamilies that possess significant sequence identity among them and might share or not common substrates or mechanisms of reaction; and (c) macrofamilies, each comprising a cluster of monophyletic protein families with protein members from the three domains of life, which includes at least one subfamily member that displays activity related to a very ancient metabolic pathway. In this context, a superfamily is a group of homologous protein families (and/or macrofamilies) with monophyletic origin that shares at least a barely detectable sequence similarity, but showing the same 3D fold. The MDR superfamily encloses three macrofamilies, with eight families and 49 subfamilies. These subfamilies exhibit great functional diversity including noncatalytic members with different subcellular, phylogenetic, and species distributions. This results from constant enzymogenesis and proteinogenesis within each kingdom, and highlights the huge plasticity that MDR superfamily members possess. Thus, through evolution a great number of taxa-specific new functions were acquired by MDRs. The generation of new functions fulfilled by proteins, can be considered as the essence of protein evolution. The mechanisms of protein evolution inside MDR are not constrained to conserve substrate specificity and/or chemistry of catalysis. In consequence, MDR functional diversity is more complex than sequence diversity. MDR is a very ancient protein superfamily that existed in the last universal common ancestor. It had at least two (and probably three) different ancestral activities related to formaldehyde metabolism and alcoholic fermentation. Eukaryotic members of this superfamily are more related to bacterial than to archaeal members; horizontal gene transfer among the domains of life appears to be a rare event in modern organisms.  相似文献   

20.
Structures of homologous proteins are usually conserved during evolution, as are critical active site residues. This is the case for actin and tubulin, the two most important cytoskeleton proteins in eukaryotes. Actins and their related proteins (Arps) constitute a large superfamily whereas the tubulin family has fewer members. Unaligned sequences of these two protein families were analysed by searching for short groups of family-specific amino acid residues, that we call motifs, and by counting the number of residues from one motif to the next. For each sequence, the set of motif-to-motif residue counts forms a subfamily-specific pattern (landmark pattern) allowing actin and tubulin superfamily members to be identified and sorted into subfamilies. The differences between patterns of individual subfamilies are due to inserts and deletions (indels). Inserts appear to have arisen at an early stage in eukaryote evolution as suggested by the small but consistent kingdom-dependent differences found within many Arp subfamilies and in γ-tubulins. Inserts tend to be in surface loops where they can influence subfamily-specific function without disturbing the core structure of the protein. The relatively few indels found for tubulins have similar positions to established results, whereas we find many previously unreported indel positions and lengths for the metazoan Arps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号