首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild.  相似文献   

2.
Flies from two populations of the Chilean endemic neotropical species Drosophila pavani and two populations of its sibling species Drosophila gaucha were crossed reciprocally to obtain intra- and interspecific hybrids. The developmental pathways of locomotor activity and feeding rate were analysed for eleven of twelve possible genotype groups. The hybrids showed reduced fitness indicated by a decrease in the measured traits. Hybrid disadvantage was strongest in interspecific hybrids, especially with respect to feeding behaviour. This evidence supports the contention that D. pavani and D. gaucha have evolved different coadapted gene pools controlling the developmental pathways for behavioural traits expressed during larval foraging; but genetic divergence affecting these behaviours has also taken place between locally adapted populations within each species.  相似文献   

3.
Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-β-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum.  相似文献   

4.
We investigated dispersal patterns of Drosophila larvae searchingfor pupation sites over three substrates to determine the roleof spatial heterogeneity and presence of other species on prepupationbehavior. We used D. melanogaster, D. hydei, and D. pavani whoseparents emerged from apples collected in one orchard. Each speciesshowed different preferences for substrates on which to pupate,particularly in the presence of another Drosophila species.Larval locomotion rate and turning behavior in D. melanogaster,D. hydei, and D. pavani were modified depending this upon thetype of substrate (agar and sand) on which the larvae crawled.These two behaviors are involved in dispersal and aggregationof pupae. Distance between pupae of the same species decreaseswhen larvae of another species pupate on the same substrate.Aggregated distributions over the substrates lead to patcheswith few or no individuals. These could serve as pupation sitesfor other Drosophila species that, in nature, also emerge fromsmall breeding sites.  相似文献   

5.
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.  相似文献   

6.
Aim To investigate whether differences in the elevational trend in native and alien species richness were dependent on climate or human pressures. Specifically we tested whether life‐form and/or alien/native status modifies the response of plant species richness to human population and temperature along: (1) a complete elevational gradient, and (2) within separate elevational bands that, by keeping temperature within a narrow range, elucidate the effects of human pressures more clearly. Location Two provinces (c. 7507 km2) on the southern border of the European Alps (Italy), subdivided into 240 contiguous sampling cells (c. 35.7 km2). Methods We used an extensive dataset on alien and native species richness across an elevation gradient (20–2900 m a.s.l.). Richness of natives and naturalized aliens were separately related to temperature, human population and Raunkiaer life‐form using general linear mixed models. Life‐form describes different plant strategies for survival during seasons with adverse cold/arid conditions. Results The relationship between species richness and temperature for natives was strongly dependent on life‐form, while aliens showed a consistent positive trend. Similar trends across alien and native life‐forms were found for the relationship between species richness and human population along the whole gradient and within separate elevational bands. Main conclusions The absence of life‐form‐dependent responses amongst aliens supports the hypothesis that the distribution of alien plant species richness was more related to propagule pressure and availability of novel niches created by human activities than to climatic filtering. While climate change will potentially contribute to relaxing species thermal constraints, the response of alien species to future warming will also be contingent on changes in anthropogenic pressures.  相似文献   

7.
8.
In most animals that have X and Y sex chromosomes, chromosome-wide mechanisms are used to balance X-linked gene expression in males and females. In the fly Drosophila melanogaster, the dosage compensation mechanism also generally extends to X-linked transgenes. Over 70 transgenic lines of the Australian sheep blowfly Lucilia cuprina have been made as part of an effort to develop male-only strains for a genetic control program of this major pest of sheep. All lines carry a constitutively expressed fluorescent protein marker gene. In all 12 X-linked lines, female larvae show brighter fluorescence than male larvae, suggesting the marker gene is not dosage compensated. This has been confirmed by quantitative RT-PCR for selected lines. To determine if endogenous X-linked genes are dosage compensated, we isolated 8 genes that are orthologs of genes that are on the fourth chromosome in D. melanogaster. Recent evidence suggests that the D. melanogaster fourth chromosome, or Muller element F, is the ancestral X chromosome in Diptera that has reverted to an autosome in Drosophila species. We show by quantitative PCR of male and female DNA that 6 of the 8 linkage group F genes reside on the X chromosome in L. cuprina. The other two Muller element F genes were found to be autosomal in L. cuprina, whereas two Muller element B genes were found on the same region of the X chromosome as the L. cuprina orthologs of the D. melanogaster Ephrin and gawky genes. We find that the L. cuprina X chromosome genes are equally expressed in males and females (i.e., fully dosage compensated). Thus, unlike in Drosophila, it appears that the Lucilia dosage compensation system is specific for genes endogenous to the X chromosome and cannot be co-opted by recently arrived transgenes.  相似文献   

9.
In the outskirts of Santiago, Chile (La Florida), collections of drosophilids were performed every month from 1984 to 1991. Some of the species are cosmopolitan, like D. melanogaster and D. simulans, or subcosmopolitan, like D. subobscura. A few others are endemics, like D. pavani and some Scaptomyza. The population sizes of all the species show annual and monthly periodic fluctuations, detected by autocorrelations analyses, excepting D. melanogaster, that exhibits very weak monthly correlations. This seems to indicate that D. melanogaster is weakly coupled to periodic phenomena that are acting on the rest of the drosophilid fauna. Furthermore, biogeographic categories, like cosmopolitan, or subcosmopolitan, or endemic species, are of very little importance when applied to single localities, since species cluster irrespective of them being endemic or cosmopolitan.  相似文献   

10.
11.
This study of pupation site selection was undertaken to assess the frequency and orientation of pupae making physical contact in four sympatric species in the family Drosophilidae: Drosophila melanogaster, D. simulans, D. funebris, and Zaprionus tuberculatus. Pupation behavior was assayed in a vial containing a small food cup. Using nearest-neighbor analysis, we found that pupae were aggregated. Furthermore, the frequency of contact between pupae was far greater than could be explained by chance, in all four species. In the three species of Drosophila, about a third of the contacts were between intimately paired pupae whose long axes were parallel; we call this arrangement synapsis. In Z. tuberculatus, most pupal contacts were unoriented. When D. melanogaster larvae were reared with each of the other species, heterospecific pupal contact, including synapsis, occurred. Our discovery of pupal contact in several drosophilids expands the known repertory of social behavior in this family.  相似文献   

12.
Slave-making ants exploit the labour of their own or another species. Temnothorax ambiguus and T. longispinosus are both ant species that serve as hosts of the obligatory slave-making ant Protomognathus americanus and are facultative slave-makers themselves. We offered laboratory colonies of T. ambiguus and T. longispinosus a series of choices among different larval types to better understand their brood discrimination abilities. Workers of both species preferentially accepted nestmate over non-nestmate larvae. Both species preferentially retrieved unrelated conspecific larvae over congeneric allospecific larvae, and T. ambiguus workers consumed more allospecifics than conspecifics. When presented with conspecific versus P. americanus larvae, both species manifested a clear bias towards conspecific larvae in terms of earlier retrieval and reduced cannibalism. That workers did not prefer P. americanus larvae over conspecific larvae as documented in previous research likely reflects the fact that in the present study, subject workers had access to the entirety of their colony as a referent during rearing and at the time of testing, as they would in nature. Moreover, reciprocal contact between P. americanus and conspecific larvae increased acceptance of the slave-maker larvae, but did not appear to lessen the acceptability of conspecific larvae. This suggests that transfer of cues through contact may be sufficient to alter the recognition signature of P. americanus larvae increasing acceptability by their hosts.  相似文献   

13.
《Animal behaviour》1987,35(6):1720-1724
Workers of the ant species Leptothorax ambiguus and L. longispinosus were exposed to larvae of their own species (conspecific), to larvae of the other species in the pair (allospecific), or to no larvae at all (social isolation) during the first 10 days after adult eclosion. Workers exposed to conspecific larvae preferentially accepted conspecific larvae. Workers exposed to allospecific larvae and socially isolated workers accepted larvae of both species. These results may partially explain why workers of these two species are vulnerable to enslavement by the obligatory parasites Harpagoxenus americanus and L. duloticus.  相似文献   

14.
Aim We tested whether the species–energy and species–human relationships vary between native and both naturalized and casual alien species richness when other environmental variables had been taken into account. Location Trento Province, a region (c. 6200 km2) on the southern border of the European Alps (Italy), subdivided into 156 contiguous (c. 37.5 km2) cells and ranging in elevation from 66 to 3769 m. Methods Data were separated into three subsets, representing richness of natives, naturalized aliens and casual aliens and separately related to temperature, human population and various environmental correlates of plant species diversity. We applied ordinary least squares and simultaneous autoregressive regressions to identify potential contrasting responses of the three plant status subsets and hierarchical partitioning to evaluate the relative importance of the predictor variables. Results Variation in alien plant species richness along the region was almost entirely explained by temperature and human population density. The relationships were positive but strongly curvilinear. Native species richness was less strongly related to either factor but was positively related to the presence of calcareous bedrock. Native species richness had a decelerating positive relationship with temperature (R2= 55%), whereas naturalized and casual aliens had a positive accelerating relationship explaining 86% and 62% of the variation in richness, respectively. Native species richness had a positive decelerating relationship with population density (R2= 42%), whilst both alien subsets had a positive accelerating relationship. Main conclusions Alien species richness was higher in areas with the most rich and diverse assemblages of native species. Areas at high altitudes are not especially prone to alien invasion due to energy constraints, low propagule pressure and disturbance, even considering a potential increased in temperature. Thus, if we consider future environmental change, we should expect a stronger response of aliens than natives in the currently warm, urbanized, low‐altitude areas than in cold, high‐altitude areas where human population density is low.  相似文献   

15.
16.
17.
Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.  相似文献   

18.
《Acta Oecologica》2007,31(1):40-47
We tested the hypotheses that invasive species had higher irradiance plasticity, capture ability and efficiency than noninvasive species using two invasive aliens – Ageratina adenophora and Chromolaena odorata, and one noninvasive alien – Gynura sp. The three aliens were grown at 4.5%, 12.5%, 36%, 50% and 100% irradiances for 64 days before harvesting. The plastic response of specific leaf area (SLA) contributed to improved light interception at low irradiance, carbon gain and water balance at high irradiance. It was a good predictor for intraspecific irradiance responses of leaf area ratio (LAR), leaf area:root mass ratio, maximum photosynthetic rate (Pmax) and net assimilation rate (NAR). Biomass allocation-related traits were species specific and their plasticity to irradiance was low. The high root mass fraction, leaf mass fraction and LAR distinguished the two invaders from Gynura. However, other resource capture-related traits, such as SLA, NAR and Pmax, were not always higher for the invaders than for Gynura. Furthermore, plasticity to irradiance was not different between the invasive and noninvasive aliens. With increasing irradiance, Gynura decreased biomass investment to roots and leaves but increased the investment to support structures adversely affecting both low and high irradiance acclimation. Ageratina might invade new habitat successfully through tolerating shading at low irradiance and outshading competitors by forming dense stands when irradiance is increased. The results suggested that both resource capture-related traits and irradiance acclimation conferred competitive advantage to the two invaders and some traits were common for invasive and noninvasive aliens but others were specific for invaders.  相似文献   

19.
Nesidiocoris tenuis Reuter (Heteroptera: Miridae) is an omnivorous mirid bug that preys on diverse generalist herbivorous arthropods. N. tenuis adults are attracted to volatiles from plants induced by their prey, such as tobacco cutworms (CCW) (Spodoptera litura larvae) and two-spotted spider mites (Tetranychus urticae). N. tenuis adults also induce volatiles when they infest plants. In this study, we focused on olfactory responses of N. tenuis males and females to volatiles from eggplants and sesame plants induced by conspecifics of the same or different gender by using a Y-tube olfactometer. Males were attracted to volatiles from plants of both species induced by either males or females. The male preference was biased to volatiles from plants of both species induced by females, probably because the biased response would facilitate their mate-finding. Females were attracted only to volatiles from plants of both species induced by females. Mating occurs multiple times in this species. Thus, the responses would indirectly affect mating of males and females. Slight but significant qualitative and quantitative differences were detected between the volatiles of plants of both species induced by N. tenuis females and those of the plants induced by conspecific males. N. tenuis might use such differences in their gender-specific responses.  相似文献   

20.
Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号