首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successfully enforced marine protected areas (MPAs) have been widely demonstrated to allow, within their boundaries, the recovery of exploited species and beyond their boundaries, the spillover of juvenile and adult fish. Little evidence is available about the so-called ‘recruitment subsidy’, the augmented production of propagules (i.e. eggs and larvae) due to the increased abundance of large-sized spawners hosted within effective MPAs. Once emitted, propagules can be locally retained and/or exported elsewhere. Patterns of propagule retention and/or export from MPAs have been little investigated, especially in the Mediterranean. This study investigated the potential for propagule production and retention/export from a Mediterranean MPA (Torre Guaceto, SW Adriatic Sea) using the white sea bream, Diplodus sargus sargus, as a model species. A multidisciplinary approach was used combining 1) spatial distribution patterns of individuals (post-settlers and adults) assessed through visual census within Torre Guaceto MPA and in northern and southern unprotected areas, 2) Lagrangian simulations of dispersal based on an oceanographic model of the region and data on early life-history traits of the species (spawning date, pelagic larval duration) and 3) a preliminary genetic study using microsatellite loci. Results show that the MPA hosts higher densities of larger-sized spawners than outside areas, potentially guaranteeing higher propagule production. Model simulations and field observation suggest that larval retention within and long-distance dispersal across MPA boundaries allow the replenishment of the MPA and of exploited populations up to 100 km down-current (southward) from the MPA. This pattern partially agrees with the high genetic homogeneity found in the entire study area (no differences in genetic composition and diversity indices), suggesting a high gene flow. By contributing to a better understanding of propagule dispersal patterns, these findings provide crucial information for the design of MPAs and MPA networks effective to replenish fish stocks and enhance fisheries in unprotected areas.  相似文献   

2.
Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40–64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.  相似文献   

3.
Domoic acid in phytoplankton and fish in San Diego, CA, USA   总被引:1,自引:0,他引:1  
We provide the first confirmation of the presence of domoic acid (DA) in phytoplankton and fish in San Diego, California, based on samples collected between 1 October 2003 and 29 September 2004. In February 2004, we detected DA in seawater samples collected off the Scripps Pier and also in coastal samples as far as 120 km to the north. At the same time we observed populations of toxic Pseudo-nitzschia australis and Pseudo-nitzschia multiseries as high as 7.7 × 104 cells l−1. Elevated concentrations of DA and abundances of the toxic species were also found further north in coastal waters of Orange County and, to a lesser extent, in southern Los Angeles County. DA concentrations in the viscera from four species of fish obtained at or near the Scripps Pier ranged from low to above the critical level for public safety. Samples of mussel tissues from the Scripps Pier analyzed by the State Department of Health Services contained low but detectable amounts of DA. Concomitant sea lion strandings from San Diego to Malibu Beach may be related to the presence of DA. DA in tissue from mussels and fish provides evidence for the local transfer of DA from an algal source to higher trophic levels in San Diego coastal waters.  相似文献   

4.
Marine Protected Areas (MPAs) are a key management tool for the conservation of biodiversity and restoration of marine communities. While large, well-designed and enforced MPAs have been found to be effective, results from small MPAs vary. The Hawkesbury Shelf, a coastal bioregion in New South Wales, Australia, has ten small, near-shore MPAs known as Aquatic Reserves with a variety of protection levels from full no-take to partial protection. This study assessed the effectiveness of these MPAs and analysed how MPA age, size, protection level, wave exposure, habitat complexity, and large canopy-forming algal cover affected fish, invertebrate and benthic communities. We found aspect, protection level, complexity and algal canopy to be important predictors of communities in these MPAs. Most MPAs, however, were not effective in meeting their goals. Only full no-take protection (three out of ten MPAs) had a significant impact on fish assemblages. One no-take MPA—Cabbage Tree Bay—which is naturally sheltered from wave action and benefits from an active local community providing informal enforcement, accounted for most of the increased richness of large fish and increased biomass of targeted fish species. Our findings suggest that small MPAs can enhance biodiversity and biomass on a local scale but only if they have full no-take protection, are in sheltered locations with complex habitat, and have positive community involvement to engender support and stewardship. These results provide a baseline for robust assessment of the effectiveness of small MPAs and inform future management decisions and small MPA design in other locations.  相似文献   

5.
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions.  相似文献   

6.
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.  相似文献   

7.
Aim To study the siting of marine protected areas (MPAs) with respect to the biogeographical distribution of seaweeds within the Agulhas Marine Province and to assess the effectiveness of current MPAs in including (conserving) seaweeds of the South African south coast. Location South Africa – the south coast between Cape Agulhas and the Eastern Cape/Kwazulu‐Natal border, and eight MPAs within that area. Methods We used interpolated seaweed distribution records from all available sources, in 50‐km coastal sections. Cluster analysis (Jaccard Average Linkage) of species presence/absence data provided measures of similarity between coastal sections and between MPAs. Complementarity analyses identified the sequence of ‘importance’ of sections/MPAs for conserving seaweed species. Results Species presence/absence data indicated two main groups, representing western (cooler water) and eastern (warmer water) biogeographical divisions, as well as several biogeographical subdivisions within each of these groups. Complementarity analysis yielded a sequence of ‘importance’ of coastal sections (in terms of the highest number of species included) that began with a section just east of central in the Agulhas Marine Province, around Port Alfred, where there is no MPA. This was followed by the easternmost section (warmest water), which contains the Pondoland MPA, and then by the westernmost (coolest water) section, containing the De Hoop MPA. Similar analysis of the actual species collected in MPAs showed a generally similar pattern. Main conclusions Seven current MPAs and one proposed coastal MPA in the Agulhas Marine Province appear to be well distributed and well sited to include (conserve) the full biogeographical range of seaweeds. However, if further MPAs are to be considered, the Port Alfred area is recommended for improved conservation. This study did not examine estuaries, which may require improved conservation efforts. Seaweed distribution data, which are often relatively complete, offer a good tool for planning the siting of coastal MPAs.  相似文献   

8.
Densities of macrobenthic invertebrates and macro-algae in four Tasmanian ‘no-take’ marine protected areas (MPAs) were monitored annually for 10 years following MPA establishment, with changes compared to those at external (fished) reference locations. Fishing substantially influenced the population characteristics of many species, including altering the mean size and abundance of rock lobsters and the abundance of prey species such as urchins and abalone. Strong declines in abundances of purple urchins and abalone within the largest MPA at Maria Island indicate likely indirect effects related to protection of predators from fishing. The two smallest MPAs (ca. 1 km coastal span) generated few detectable changes. Our results affirm the importance of long-term monitoring and the value of MPAs, when sufficiently large, as reference areas for determining and understanding ecosystem effects of fishing in the absence of historical baseline data.  相似文献   

9.
A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50–84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.  相似文献   

10.
Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.  相似文献   

11.
Habitat associations and the effect of predators on dwarf rockfishes (Sebastes spp.) were investigated in two large marine protected areas (MPAs) off southern California. Using data from submersible surveys, the occurrence and abundance of dwarf rockfishes were modeled using substrata types and the biomass of predators as predictor variables. The occurrence and abundance of dwarf rockfishes generally were positively associated with rock, boulder, and cobble substrata. The association between predators and occurrence of dwarf rockfishes differed substantially between species. Predator density and biomass levels were much lower in the southern California MPAs than in a de facto MPA off central California. Better inference about predator effects on dwarf rockfishes will be possible if the predator biomass and densities of southern California MPAs increase to that observed in the de facto MPA.  相似文献   

12.

Tropical coral reefs are subject to multiple pressures from both natural and anthropogenic sources. These pressures have caused widespread declines in reef health, resulting in the increased use of spatial management tools such as marine protected areas (MPAs). MPAs have proven generally effective if well designed and enforced, but there are limited long-term studies investigating how the presence of small-scale MPAs affects fish populations and reef communities. Using a 12-year time series, we found that small-scale (10–50 ha) community-managed MPAs along the Danajon Bank of the Philippines preserved average fish biomass within their boundaries over time relative to surrounding fished reefs. Unprotected areas are, however, showing significant long-term biomass decline. MPAs were also found to preserve more key trophic groups and larger-bodied commercially targeted reef fish families. Fish biomass of piscivore, scavenger and invertivore trophic groups inside individual MPAs is, however, still declining at a similar rate as outside. Surprisingly, long-term benthic cover and growth form composition were not significantly affected overall by MPA presence, despite the sporadic use of highly destructive dynamite fishing in this region. Coral cover has remained historically low (21–28%) throughout the study, following widespread bleaching mortality. While management tempered overall abundance declines, we found that irrespective of MPA presence, there was a generalised decline of both large- and small-bodied fish size groups across the study region, most steeply within the 20–30 cm length fish, and a shift towards proportionally higher abundances of small (5–10 cm) fish. This indicates a combination of over-exploitation, inadequate MPA size and coverage for larger fish, and the lingering effects of the 1998 bleaching event. Generalised shifts in body size and trophic structure reported here could lead to future reductions in fishery productivity and stability and will be further exacerbated unless broader fishery regulations and enforcement is instated.

  相似文献   

13.
No-take marine protected areas (MPAs) are assumed to enhance fisheries catch via the “spillover” effect, where biomass is exported to adjacent exploited areas. Recent studies in spearfishing fisheries suggest that the spillover of gear-naïve individuals from protected to unprotected sites increases catch rates outside the boundaries of MPAs. Whether this is a widespread phenomenon that also holds for other gear types and species is unknown. In this study, we tested if the distance to a Mediterranean MPA predicted the degree of vulnerability to hook and line in four small-bodied coastal fish species. With the assistance of underwater video recording, we investigated the interaction effect of the distance to the boundary of an MPA and species type relative to the latency time to ingest a natural bait, which was considered as a surrogate of fish naïveté or vulnerability to fishing. Vulnerability to angling increased (i.e., latency time decreased) within and near the boundary of an MPA for an intrinsically highly catchable species (Serranus scriba), while it remained constant for an intrinsically uncatchable control species (Chromis chromis). While all of the individuals of S. scriba observed within the MPA and surrounding areas were in essence captured by angling gear, only one fifth of individuals in the far locations were captured. This supports the potential for the spillover of gear-naïve and consequently more vulnerable fish from no-take MPAs. Two other species initially characterized as intermediately catchable (Coris julis and Diplodus annularis) also had a shorter latency time in the vicinity of an MPA, but for these two cases the trend was not statistically significant. Overall, our results suggest that an MPA-induced naïveté effect may not be universal and may be confined to only intrinsically highly catchable fish species. This fact emphasizes the importance of considering the behavioural dimension when predicting the outcomes of MPAs, otherwise the effective contribution may be smaller than predicted for certain highly catchable species such as S. scriba.  相似文献   

14.
Seahorses are iconic charismatic species that are often used to ‘champion’ marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White''s seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance.  相似文献   

15.
16.
This paper is about modeling the perceived social impacts of three proposed marine protected areas (MPAs), each designed to protect coral reefs. The paper argues that shared perceptions of these impacts have resulted in different community-level responses to these MPA proposals. The study is uniquely situated in the Bahamas where the government has approved setting aside 30 No-take MPAs (including three under study here) to protect the coastal marine environment. The paper is based on 572 interviews conducted during eight field trips with members of six traditional settlements in the Exuma Islands and Cays in the central Bahamas. Overall, 34% of the census population of these settlements was interviewed at least once. Key findings are that an MPA can impact in either positive or negative ways (a) community agency by the process of siting, (b) community resilience by eliminating or supporting some components of their traditional adaptations to social and natural environments, and (c) community identity by precluding or protecting customary marine access. MPA impacts to local communities determine whether those communities will support or resist proposed MPAs.  相似文献   

17.
The Mediterranean Sea (0.82% of the global oceanic surface) holds 4%-18% of all known marine species (~17,000), with a high proportion of endemism [1, 2]. This exceptional biodiversity is under severe threats [1] but benefits from a system of 100 marine protected areas (MPAs). Surprisingly, the spatial congruence of fish biodiversity hot spots with this MPA system and the areas of high fishing pressure has not been assessed. Moreover, evolutionary and functional breadth of species assemblages [3] has been largely overlooked in marine systems. Here we adopted a multifaceted approach to biodiversity by considering the species richness of total, endemic, and threatened coastal fish assemblages as well as their functional and phylogenetic diversity. We show that these fish biodiversity components are spatially mismatched. The MPA system covers a small surface of the Mediterranean (0.4%) and is spatially congruent with the hot spots of all taxonomic components of fish diversity. However, it misses hot spots of functional and phylogenetic diversity. In addition, hot spots of endemic species richness and phylogenetic diversity are spatially congruent with hot spots of fishery impact. Our results highlight that future conservation strategies and assessment efficiency of current reserve systems will need to be revisited after deconstructing the different components of biodiversity.  相似文献   

18.
The central California coast is visited by millions of people every year, many of whom collect intertidal gastropods for food, bait or recreation in near-shore marine environments. The harvesting of these animals has caused a decline in body size because humans preferentially take the largest individuals. Marine protected areas (MPAs) may serve to protect gastropods from this impact. The average body size and frequency of four gastropod species from eight study locations along the central California coast were determined. Five study locations were in MPAs and three study locations were in non-MPA zones. Gastropods in four California museums were measured and compared to specimens collected in the field. Three of the four species studied were larger and/or more frequent in MPAs than outside MPAs, including both harvested species and one unharvested species. For three of the four species, the average size of individuals from MPA sites was significantly smaller than museum specimens, but this may be due, in part, to our sampling procedure. These findings indicate that MPAs can be effective at reducing human impacts for some species, but that further study is needed to make MPAs as effective as possible for more species.  相似文献   

19.
肖怡  陈尚  曹志泉  夏涛  郝林华 《生态学报》2016,36(11):3321-3328
选取山东济南(代表内陆城市)和青岛(代表沿海城市),基于条件价值法(CVM),对两市城镇居民进行问卷调查,通过建立支付意愿多元线性回归方程用以评估山东省城镇居民对维持山东88个海洋保护区永续存在的支付意愿,进而估算山东海洋保护区的生态系统多样性维持服务价值。研究发现,人均年收入较高,支付意愿较大;文化程度较低,支付意愿较小;男性比女性的支付意愿高;内陆城镇居民对于海洋保护区的人均支付意愿为102.15元,比沿海城镇居民的支付意愿高23.05元。2014年,山东全部88个海洋保护区的生态系统多样性维持服务价值为43.7亿元,平均0.497亿元/个。其中,12个自然保护区的价值为16.14亿元,平均1.35亿元/个;30个海洋特别保护区的价值为14.47亿元,平均0.489亿元/个;46个水产种质资源保护区的价值为12.9亿元,平均0.28亿元/个。结果表明:海洋自然保护区的生态系统多样性维持服务价值比海洋特别保护区和水产种质资源保护区高。在修订我国各类保护区的选划标准和管理目标时,应增加生态系统多样性维持服务价值并作为关键的选划指标。具有最高生态系统多样性维持服务价值的海域,宜选划为自然保护区,实施最严格的管理措施,确保其生态系统多样性维持服务价值增加,至少不降低。具有较高生态系统多样性维持服务价值的海域,因地制宜选划为海洋特别保护区或者海洋水产种质资源保护区,实施较严格的管理措施,确保其生态系统多样性维持服务价值不降低。  相似文献   

20.
A number of fish and invertebrate stocks have been depleted by overexploitation in recent years. To address this, marine protected areas (MPAs) are often established to protect biodiversity and recover stocks. We analyzed the potential impact of establishing MPAs on marine ecosystems using mathematical models. We demonstrate that establishment of an MPA can sometimes result in a considerable decline, or even extinction, of a species. We focus on a prey–predator system in two patches, one exposed to fishing activity and the other protected (MPA). Our analyses reveal that the establishment of the MPA can cause a reduction in prey abundance, and even extinction of the prey. Such unintended consequences are more likely to occur if the predator species is a generalist and if the MPA is intended to protect only the predatory species. Further, a mobile predator that migrates adaptively rather than randomly is associated with a greater reduction in prey abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号