首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D''Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.  相似文献   

2.
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants.Plants are vulnerable to attack by plant-parasitic nematodes. The cyst-forming endoparasitic nematodes (Globodera and Heterodera spp.) are among the most damaging plant pathogens, causing tremendous crop losses globally (Chitwood, 2003). Cyst nematodes have evolved an intimate parasitic relationship with their hosts by transforming normal root cells into a unique feeding structure called a syncytium that serves as the sole nutritive source required for subsequent growth and development (Hussey and Grundler, 1998; Davis et al., 2004). Cyst nematodes are soil-borne pathogens. Once infective juveniles hatch in the soil, they penetrate into the roots of host plants and select a single cell near the root vasculature to initiate a syncytium. The syncytium forms by the fusion of cells adjacent to the initial syncytial cell through extensive cell wall dissolution and develops into a large fused cell that is highly metabolically active and contains numerous enlarged nuclei and nucleoli (Endo, 1964). Like other plant pathogens, cyst nematodes use secreted effector proteins to facilitate plant parasitism. Effector proteins, originating from the nematode esophageal gland cells (two subventral and one dorsal) and secreted into root tissues through the nematode stylet (a mouth spear), represent important molecular signals that manipulate various host cellular processes to redifferentiate normal root cells into a syncytium (Davis et al., 2004; Mitchum et al., 2008, 2013).Genes encoding effector proteins with sequence similarity to plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have recently been cloned from several cyst nematode species, including the potato cyst nematode (PCN [Globodera rostochiensis; Gr]; Wang et al., 2001, 2011; Gao et al., 2003; Lu et al., 2009), a regulated and devastating pest of potato (Solanum tuberosum [St]) and tomato (Solanum lycopersicum) crops. Plant CLE proteins, identified from diverse monocot and dicot species (Cock and McCormick, 2001; Oelkers et al., 2008), are a class of peptide hormones that regulate many aspect of plant growth and development (Yamada and Sawa, 2013). Plant CLE genes encode small proteins that contain an N-terminal signal peptide, an internal variable domain, and either a single or multiple conserved C-terminal CLE domain(s) (Cock and McCormick, 2001; Kinoshita et al., 2007; Oelkers et al., 2008). The Arabidopsis (Arabidopsis thaliana [At]) genome encodes at least 32 single-domain CLEs, of which CLAVATA3 (CLV3) is the best characterized member. CLV3 is found to interact with three major membrane-associated receptor complexes, CLV1, CLV2-CORYNE (CRN), and RECEPTOR LIKE PROTEIN KINASE2 (RPK2; Clark et al., 1993; Jeong et al., 1999; Müller et al., 2008; Kinoshita et al., 2010; Zhu et al., 2010), to control the fate of stem cells in the shoot apical meristem (Fletcher et al., 1999). Among the three CLV3 receptors, CLV1 and RPK2 are leucine-rich repeat (LRR) receptor-like kinases, whereas CLV2 is an LRR receptor-like protein that acts together with a membrane-associated protein kinase, CRN, to transmit the CLV3 signal. The 96-amino acid CLV3 precursor is proteolytically processed into a mature 13-amino acid arabinosylated glycopeptide derived from its CLE domain, in which one (at position 7) of the two Hyp residues (at positions 4 and 7) is further modified by the addition of three units of l-Ara (Ohyama et al., 2009). The mature CLV3 glycopeptide exhibits full biological activity and binds to the LRR domain of CLV1 more strongly than nonarabinosylated forms (Ohyama et al., 2009). Hyp arabinosylation, a posttranslational modification unique to plants, also has been observed in mature CLE2 and CLE9 peptides from Arabidopsis as well as in CLE-ROOT SIGNAL2, an Arabidopsis CLE2 ortholog that controls nodulation in Lotus japonicus (Lj; Ohyama et al., 2009; Shinohara et al., 2012; Okamoto et al., 2013), where the arabinoside chains are revealed to have important roles in biological activity, receptor binding, and peptide conformation (Shinohara and Matsubayashi, 2013). Many Arabidopsis CLE genes are expressed in roots (Sharma et al., 2003; Jun et al., 2010), and evidence is emerging that CLE-receptor signaling pathways regulate root meristem function (Stahl et al., 2009, 2013; Meng and Feldman, 2010).Nematode CLE genes are expressed exclusively within the dorsal gland cell and encode secreted proteins with the characteristic CLE motif(s) at their C termini (Mitchum et al., 2008; Lu et al., 2009; Wang et al., 2011). Outside the conserved CLE motif, there is no sequence similarity between nematode and plant CLE proteins. The dramatic up-regulation of CLE genes in parasitic stages of the nematode life cycle (Wang et al., 2001, 2010b, 2011; Gao et al., 2003; Lu et al., 2009), along with the observation that transgenic plants expressing double-stranded RNA complementary to nematode CLE genes are less susceptible to nematode infection (Patel et al., 2008), have made it clear that CLE effectors play a critical role in nematode parasitism. Nematode-encoded CLE genes are the only CLE genes that have been identified outside the plant kingdom. Several lines of evidence suggest that nematode CLEs function as peptide mimics of endogenous plant CLEs. First, overexpression of nematode CLE genes in Arabidopsis generated phenotypes similar to those of plant CLE gene overexpression (Wang et al., 2005, 2011; Lu et al., 2009). Second, expression of nematode-encoded CLE genes in the shoot apical meristem of an Arabidopsis clv3-2 null mutant partially or completely rescued the mutant phenotypes (Lu et al., 2009; Wang et al., 2010b). Lastly, recent studies showed that Arabidopsis receptors, including CLV1, CLV2-CRN, and RPK2, are expressed in syncytia induced by the beet cyst nematode (BCN; Heterodera schachtii) and that receptor mutants fail to respond to BCN CLE peptides and show increased resistance to BCN infection (Replogle et al., 2011, 2013), further bolstering the notion of nematode-secreted CLE effectors as peptide mimics of endogenous plant CLEs and the importance of nematode CLE signaling in plant parasitism.Plant CLE precursors undergo posttranslational modifications and proteolytic processing to become bioactive CLE peptides (Shinohara and Matsubayashi, 2010; Shinohara et al., 2012; Okamoto et al., 2013). To fulfill a role as peptide mimics of plant CLEs, nematode CLEs are presumably recognized by the existing host modification and processing machinery for maturation. However, until now, the bioactive form of nematode-secreted CLEs that acts in planta has not been described. In addition, cyst nematodes are specialist feeders. Many agriculturally important nematode species, such as PCN, the soybean cyst nematode (Heterodera glycines), and the cereal cyst nematode (Heterodera avenae), fail to infect Arabidopsis. The mechanism of perception of nematode-secreted CLEs in crop plants still awaits investigation. In this study, we explored the molecular basis of CLE mimicry in the PCN-potato pathosystem. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis, we determined that the in planta mature form of proGrCLE1, a representative and multidomain CLE effector secreted from PCN during infection (Lu et al., 2009), is a 12-amino acid arabinosylated glycopeptide (hereafter referred to as GrCLE1-1Hyp4,7g) similar in structure to bioactive plant CLE peptides. We further cloned a CLV2-like gene from potato (hereafter referred to as StCLV2). We found that the GrCLE1-1Hyp4,7g glycopeptide binds directly to the StCLV2 ectodomain with high affinity and that transgenic potato lines with reduced StCLV2 expression are less susceptible to PCN infection. Our data provide direct evidence that nematode-secreted CLE effectors can be recognized by existing host cellular machinery to become bioactive mimics of endogenous plant CLE signals and suggest that cyst nematodes tap into the conserved CLV2 signaling pathway to promote successful infection of crop plants.  相似文献   

3.
4.
Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.  相似文献   

5.
Phytoparasitic nematodes that are able to infect and reproduce on plants that are considered resistant are referred to as virulent. The mechanism(s) that virulent nematodes employ to evade or suppress host plant defenses are not well understood. Here we report the use of a genetic strategy (allelic imbalance analysis) to associate single nucleotide polymorphisms (SNPs) with nematode virulence genes in Heterodera glycines, the soybean cyst nematode (SCN). To accomplish this analysis, a custom SCN SNP array was developed and used to genotype SCN F3-derived populations grown on resistant and susceptible soybean plants. Three SNPs reproducibly showed allele imbalances between nematodes grown on resistant and susceptible plants. Two candidate SCN virulence genes that were tightly linked to the SNPs were identified. One SCN gene encoded biotin synthase (HgBioB), and the other encoded a bacterial-like protein containing a putative SNARE domain (HgSLP-1). The two genes mapped to two different linkage groups. HgBioB contained sequence polymorphisms between avirulent and virulent nematodes. However, the gene encoding HgSLP-1 had reduced copy number in virulent nematode populations and appears to produce multiple forms of the protein via intron retention and alternative splicing. We show that HgSLP-1 is an esophageal-gland protein that is secreted by the nematode during plant parasitism. Furthermore, in bacterial co-expression experiments, HgSLP-1 co-purified with the SCN resistance protein Rhg1 α-SNAP, suggesting that these two proteins physically interact. Collectively our data suggest that multiple SCN genes are involved in SCN virulence, and that HgSLP-1 may function as an avirulence protein and when absent it helps SCN evade host defenses.  相似文献   

6.
7.
Pollen tube (PT) reception in flowering plants describes the crosstalk between the male and female gametophytes upon PT arrival at the synergid cells of the ovule. It leads to PT growth arrest, rupture, and sperm cell release, and is thus essential to ensure double fertilization. Here, we describe TURAN (TUN) and EVAN (EVN), two novel members of the PT reception pathway that is mediated by the FERONIA (FER) receptor-like kinase (RLK). Like fer, mutations in these two genes lead to PT overgrowth inside the female gametophyte (FG) without PT rupture. Mapping by next-generation sequencing, cytological analysis of reporter genes, and biochemical assays of glycoproteins in RNAi knockdown mutants revealed both genes to be involved in protein N-glycosylation in the endoplasmic reticulum (ER). TUN encodes a uridine diphosphate (UDP)-glycosyltransferase superfamily protein and EVN a dolichol kinase. In addition to their common role during PT reception in the synergids, both genes have distinct functions in the pollen: whereas EVN is essential for pollen development, TUN is required for PT growth and integrity by affecting the stability of the pollen-specific FER homologs ANXUR1 (ANX1) and ANX2. ANX1- and ANX2-YFP reporters are not expressed in tun pollen grains, but ANX1-YFP is degraded via the ER-associated degradation (ERAD) pathway, likely underlying the anx1/2-like premature PT rupture phenotype of tun mutants. Thus, as in animal sperm–egg interactions, protein glycosylation is essential for the interaction between the female and male gametophytes during PT reception to ensure fertilization and successful reproduction.  相似文献   

8.
Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.  相似文献   

9.
Peroxisomes rely on a diverse array of mechanisms to ensure the specific targeting of their protein constituents. Peroxisomal membrane proteins (PMPs), for instance, are targeted by at least two distinct pathways: directly to peroxisomes from their sites of synthesis in the cytosol or indirectly via the endoplasmic reticulum (ER). However, the extent to which each PMP targeting pathway is involved in the maintenance of pre‐existing peroxisomes is unclear. Recently, we showed that human PEX16 plays a critical role in the ER‐dependent targeting of PMPs by mediating the recruitment of two other PMPs, PEX3 and PMP34, to the ER. Here, we extend these results by carrying out a comprehensive mutational analysis of PEX16 aimed at gaining insights into the molecular targeting signals responsible for its ER‐to‐peroxisome trafficking and the domain(s) involved in PMP recruitment function at the ER. We also show that the recruitment of PMPs to the ER by PEX16 is conserved in plants. The implications of these results in terms of the function of PEX16 and the role of the ER in peroxisome maintenance in general are discussed.   相似文献   

10.
Phospholipase A2 (PLA2), which hydrolyzes a fatty acyl chain of membrane phospholipids, has been implicated in several biological processes in plants. However, its role in intracellular trafficking in plants has yet to be studied. Here, using pharmacological and genetic approaches, the root hair bioassay system, and PIN-FORMED (PIN) auxin efflux transporters as molecular markers, we demonstrate that plant PLA2s are required for PIN protein trafficking to the plasma membrane (PM) in the Arabidopsis thaliana root. PLA2α, a PLA2 isoform, colocalized with the Golgi marker. Impairments of PLA2 function by PLA2α mutation, PLA2-RNA interference (RNAi), or PLA2 inhibitor treatments significantly disrupted the PM localization of PINs, causing internal PIN compartments to form. Conversely, supplementation with lysophosphatidylethanolamine (the PLA2 hydrolytic product) restored the PM localization of PINs in the pla2α mutant and the ONO-RS-082–treated seedling. Suppression of PLA2 activity by the inhibitor promoted accumulation of trans-Golgi network vesicles. Root hair–specific PIN overexpression (PINox) lines grew very short root hairs, most likely due to reduced auxin levels in root hair cells, but PLA2 inhibitor treatments, PLA2α mutation, or PLA2-RNAi restored the root hair growth of PINox lines by disrupting the PM localization of PINs, thus reducing auxin efflux. These results suggest that PLA2, likely acting in Golgi-related compartments, modulates the trafficking of PIN proteins.  相似文献   

11.
Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis.  相似文献   

12.
The protein O-glucosyltransferase Rumi/POGLUT1 regulates Drosophila Notch signaling by adding O-glucose residues to the Notch extracellular domain. Rumi has other predicted targets including Crumbs (Crb) and Eyes shut (Eys), both of which are involved in photoreceptor development. However, whether Rumi is required for the function of Crb and Eys remains unknown. Here we report that in the absence of Rumi or its enzymatic activity, several rhabdomeres in each ommatidium fail to separate from one another in a Notch-independent manner. Mass spectral analysis indicates the presence of O-glucose on Crb and Eys. However, mutating all O-glucosylation sites in a crb knock-in allele does not cause rhabdomere attachment, ruling out Crb as a biologically-relevant Rumi target in this process. In contrast, eys and rumi exhibit a dosage-sensitive genetic interaction. In addition, although in wild-type ommatidia most of the Eys protein is found in the inter-rhabdomeral space (IRS), in rumi mutants a significant fraction of Eys remains in the photoreceptor cells. The intracellular accumulation of Eys and the IRS defect worsen in rumi mutants raised at a higher temperature, and are accompanied by a ∼50% decrease in the total level of Eys. Moreover, removing one copy of an endoplasmic reticulum chaperone enhances the rhabdomere attachment in rumi mutant animals. Altogether, our data suggest that O-glucosylation of Eys by Rumi ensures rhabdomere separation by promoting proper Eys folding and stability in a critical time window during the mid-pupal stage. Human EYS, which is mutated in patients with autosomal recessive retinitis pigmentosa, also harbors multiple Rumi target sites. Therefore, the role of O-glucose in regulating Eys may be conserved.  相似文献   

13.
Dynamin, a high-molecular-weight GTPase, plays a critical role in vesicle formation at the plasma membrane during endocytosis in animal cells. Here we report the identification of a new dynamin homolog in Arabidopsis named Arabidopsis dynamin-like 6 (ADL6). ADL6 is quite similar to dynamin I in its structural organization: a conserved GTPase domain at the N terminus, a pleckstrin homology domain at the center, and a Pro-rich motif at the C terminus. In the cell, a majority of ADL6 is associated with membranes. Immunohistochemistry and in vivo targeting experiments revealed that ADL6 is localized to the Golgi apparatus. Expression of the dominant negative mutant ADL6[K51E] in Arabidopsis protoplasts inhibited trafficking of cargo proteins destined for the lytic vacuole and caused them to accumulate at the trans-Golgi network. In contrast, expression of ADL6[K51E] did not affect trafficking of a cargo protein, H(+)-ATPase:green fluorescent protein, destined for the plasma membrane. These results suggest that ADL6 is involved in vesicle formation for vacuolar trafficking at the trans-Golgi network but not for trafficking to the plasma membrane in plant cells.  相似文献   

14.
15.
16.
Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor.  相似文献   

17.
RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C) to uridine (U) mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35) to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209), for cytochrome b (cob-286) and for subunit 4 of complex I (nad4-1373), respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.  相似文献   

18.
Interactions between Nup50 and soluble transport factors underlie the efficiency of certain nucleocytoplasmic transport pathways. The platform on which these interactions take place is important to building a complete understanding of nucleocytoplasmic trafficking. Nup153 is the nucleoporin that provides this scaffold for Nup50. Here, we have delineated requirements for the interaction between Nup153 and Nup50, revealing a dual interface. An interaction between Nup50 and a region in the unique N-terminal region of Nup153 is critical for the nuclear pore localization of Nup50. A second site of interaction is at the distal tail of Nup153 and is dependent on importin α. Both of these interactions involve the N-terminal domain of Nup50. The configuration of the Nup153-Nup50 partnership suggests that the Nup153 scaffold provides not just a means of pore targeting for Nup50 but also serves to provide a local environment that facilitates bringing Nup50 and importin α together, as well as other soluble factors involved in transport. Consistent with this, disruption of the Nup153-Nup50 interface decreases efficiency of nuclear import.  相似文献   

19.
20.
Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号