首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Extracellular nucleotide signaling in the inner ear   总被引:3,自引:0,他引:3  
Extracellular nucleotides, particularly adenosine 5′-triphosphate (ATP), act as signaling molecules in the inner ear. Roles as neurotransmitters, neuromodulators, and as autocrine or paracrine humoral factors are evident. The diversity of the signaling pathways for nucleotides, which include a variety of ATP-gated ion channels (assembled from different subtypes of P2X-receptor subunit) and also different subtypes of G protein-coupled nucleotide receptors (P2Y receptors) supports a major physiological role for ATP in the regulation of hearing and balance. Almost invariably both P2X and P2Y receptor expression is apparent in the complex tissue structures associated with the inner-ear labyrinth. However P2X-receptor expression, commonly associated with fast neurotransmission, is apparent not only with the cochlear and vestibular primary afferent neurons, but also appears to mediate humoral signaling via ATP-gated ion channel localization to the endolymphatic surface of the cochlear sensory epithelium (organ of Corti). This is the site of the sound-transduction process and recent data, including both electrophysiological, imaging, and immunocytochemistry, has shown that the ATP-gated ion channels are colocalized here with the mechano-electrical transduction channels of the cochlear hair cells. In contrast to this direct action of extracellular ATP on the sound-transduction process, an indirect effect is apparent via P2Y-receptor expression, prevalent on the marginal cells of the stria vascularis, a tissue that generates the standing ionic and electrical gradients across the cochlear partition. The site of generation of these gradients, including the dark-cell epithelium of the vestibular labyrinth, may be under autocrine or paracrine regulation mediated by P2Y receptors sensitive to both purines (ATP) and pyrimidines such as UTP. There is also emerging evidence that the nucleoside adenosine, formed as a breakdown product of ATP by the action of ectonucleotidases and acting via P1 receptors, is also physiologically significant in the inner ear. P1-receptor expression (including A1, A2, and A3 subtypes) appear to have roles associated with stress, acting alongside P2Y receptors to enhance cochlear blood flow and to protect against the action of free radicals and to modulate the activity of membrane conductances. Given the positioning of a diverse range of purinergic-signaling pathways within the inner ear, elevations of nucleotides and nucleosides are clearly positioned to affect hearing and balance. Recent data clearly supports endogenous ATP- and adenosine-mediated changes in sensory transduction via a regulation of the electrochemical gradients in the cochlea, alterations in the active and passive mechanical properties of the cells of the sensory epithelium, effects on primary afferent neurons, and control of the blood supply. The field now awaits conclusive evidence linking a physiologically-induced modulation of extracellular nucleotide and nucleoside levels to altered inner ear function.  相似文献   

2.
Purinergic signaling has broad physiological significance to the hearing organ, involving signal transduction via ionotropic P2X receptors and metabotropic G-protein-coupled P2Y and P1 (adenosine), alongside conversion of nucleotides and nucleosides by ecto-nucleotidases and ecto-nucleoside diphosphokinase. In addition, ATP release is modulated by acoustic overstimulation or stress and involves feedback regulation. Many of these principal elements of the purinergic signaling complex have been well characterized in the cochlea, while the characterization of P2Y receptor expression is emerging. The present study used immunohistochemistry to evaluate the expression of five P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12, during development of the rat cochlea. Commencing in the late embryonic period, the P2Y receptors studied were found in the cells lining the cochlear partition, associated with establishment of the electrochemical environment which provides the driving force for sound transduction. In addition, early postnatal P2Y2 and P2Y4 protein expression in the greater epithelial ridge, part of the developing hearing organ, supports the view that initiation and regulation of spontaneous activity in the hair cells prior to hearing onset is mediated by purinergic signaling. Sub-cellular compartmentalization of P2Y receptor expression in sensory hair cells, and diversity of receptor expression in the spiral ganglion neurons and their satellite cells, indicates roles for P2Y receptor-mediated Ca2+-signaling in sound transduction and auditory neuron excitability. Overall, the dynamics of P2Y receptor expression during development of the cochlea complement the other elements of the purinergic signaling complex and reinforce the significance of extracellular nucleotide and nucleoside signaling to hearing.  相似文献   

3.
ATP is an important extracellular signaling molecule and can activate both ionotropic (P2X) and metabotropic purinergic (P2Y) receptors to influence cellular function in many aspects. Gap junction is an intercellular channel and plays a critical role in hearing. Here, we report that stimulation of ATP reduced gap junctional coupling between cochlear supporting cells. This uncoupling effect could be evoked by nanomolar physiological levels of ATP. A P2X receptor agonist benzoylbenzoyl-ATP (BzATP) but not a P2Y receptor agonist UTP stimulated this uncoupling effect. Application of P2X receptor antagonists pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS, 50 μM) or oxidized ATP (oATP, 0.1 mM) eliminated this uncoupling effect. We further found that ATP activated P2X receptors in the cochlear supporting cells allowing Ca2+ influxing, thereby increasing intracellular Ca2+ concentration to mediate gap junctions. These data suggest that ATP can mediate cochlear gap junctions at the physiological level by the activation of P2X receptors rather than P2Y receptors. This P2X receptor-mediated purinergic control on the cochlear gap junctions may play an important role in the regulation of K+-recycling for ionic homeostasis in the cochlea and the reduction of hearing sensitivity under noise stress for protection.  相似文献   

4.
Intercellular Ca2+ waves can coordinate the action of large numbers of cells over significant distances. Recent work in many different systems has indicated that the release of ATP is fundamental for the propagation of most Ca2+ waves. In the organ of hearing, the cochlea, ATP release is involved in critical signalling events during tissue maturation. ATP-dependent signalling is also implicated in the normal hearing process and in sensing cochlear damage. Here, we show that two distinct Ca2+ waves are triggered during damage to cochlear explants. Both Ca2+ waves are elicited by extracellular ATP acting on P2 receptors, but they differ in their source of Ca2+, their velocity, their extent of spread and the cell type through which they propagate. A slower Ca2+ wave (14 μm/s) communicates between Deiters’ cells and is mediated by P2Y receptors and Ca2+ release from IP3-sensitive stores. In contrast, a faster Ca2+ wave (41 μm/s) propagates through sensory hair cells and is mediated by Ca2+ influx from the external environment. Using inhibitors and selective agonists of P2 receptors, we suggest that the faster Ca2+ wave is mediated by P2X4 receptors. Thus, in complex tissues, the expression of different receptors determines the propagation of distinct intercellular communication signals.  相似文献   

5.
Cellular, molecular, and physiological studies have demonstrated an important signaling role for ATP and related nucleotides acting via P2 receptors in the cochlea of the inner ear. Signal modulation is facilitated by ectonucleotidases, a heterologous family of surface-located enzymes involved in extracellular nucleotide hydrolysis. Our previous studies have implicated CD39/NTPDase1 and CD39L1/NTPDase2, members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, as major ATP-hydrolyzing enzymes in the tissues lining the cochlear endolymphatic and perilymphatic compartments. NTPDase1 hydrolyzes both nucleoside triphosphates and diphosphates. In contrast, NTPDase2 is a preferential nucleoside triphosphatase. This study characterizes expression of these E-NTPDases in the mouse cochlea by immunohistochemistry. NTPDase1 can be immunolocalized to the cochlear vasculature and neural tissues (primary auditory neurons in the spiral ganglion). In contrast, NTPDase2 immunolabeling was principally localized to synaptic regions of the sensory inner and outer hair cells, stereocilia and cuticular plates of the outer hair cells, supporting cells of the organ of Corti (Deiters' cells and inner border cells), efferent nerve fibers located in the intraganglionic spiral bundle, and in the outer sulcus and root region of the spiral ligament. This differential expression of NTPDase1 and 2 in the cochlea suggests spatial regulation of P2 receptor signaling, potentially involving different nucleotide species and hydrolysis kinetics.  相似文献   

6.
Connexin 26 (Cx26) and connexin 30 (Cx30) form hemichannels that release ATP from the endolymphatic surface of cochlear supporting and epithelial cells and also form gap junction (GJ) channels that allow the concomitant intercellular diffusion of Ca2+ mobilizing second messengers. Released ATP in turn activates G-protein coupled P2Y2 and P2Y4 receptors, PLC-dependent generation of IP3, release of Ca2+ from intracellular stores, instigating the regenerative propagation of intercellular Ca2+ signals (ICS). The range of ICS propagation is sensitive to the concentration of extracellular divalent cations and activity of ectonucleotidases. Here, the expression patterns of Cx26 and Cx30 were characterized in postnatal cochlear tissues obtained from mice aged between P5 and P6. The expression gradient along the longitudinal axis of the cochlea, decreasing from the basal to the apical cochlear turn (CT), was more pronounced in outer sulcus (OS) cells than in inner sulcus (IS) cells. GJ-mediated dye coupling was maximal in OS cells of the basal CT, inhibited by the nonselective connexin channel blocker carbenoxolone (CBX) and absent in hair cells. Photostimulating OS cells with caged inositol (3,4,5) tri-phosphate (IP3) resulted in transfer of ICS in the lateral direction, from OS cells to IS cells across the hair cell region (HCR) of medial and basal CTs. ICS transfer in the opposite (medial) direction, from IS cells photostimulated with caged IP3 to OS cells, occurred mostly in the basal CT. In addition, OS cells displayed impressive rhythmic activity with oscillations of cytosolic free Ca2+ concentration ([Ca2+]i) coordinated by the propagation of Ca2+ wavefronts sweeping repeatedly through the same tissue area along the coiling axis of the cochlea. Oscillations evoked by uncaging IP3 or by applying ATP differed greatly, by as much as one order of magnitude, in frequency and waveform rise time. ICS evoked by direct application of ATP propagated along convoluted cellular paths in the OS, which often branched and changed dynamically over time. Potential implications of these findings are discussed in the context of developmental regulation and cochlear pathophysiology.  相似文献   

7.
Zhao  Hong-Bo 《BMC cell biology》2016,17(1):16-126
Pannexin (Panx) is a gene family encoding gap junction proteins in vertebrates. So far, three isoforms (Panx1, 2 and 3) have been identified. All of three Panx isoforms express in the cochlea with distinct expression patterns. Panx1 expresses in the cochlea extensively, including the spiral limbus, the organ of Corti, and the cochlear lateral wall, whereas Panx2 and Panx3 restrict to the basal cells of the stria vascularis in the lateral wall and the cochlear bony structure, respectively. However, there is no pannexin expression in auditory sensory hair cells. Recent studies demonstrated that like connexin gap junction gene, Panx1 deficiency causes hearing loss. Panx1 channels dominate ATP release in the cochlea. Deletion of Panx1 abolishes ATP release in the cochlea and reduces endocochlear potential (EP), auditory receptor current/potential, and active cochlear amplification. Panx1 deficiency in the cochlea also activates caspase-3 cell apoptotic pathway leading to cell degeneration. These new findings suggest that pannexins have a critical role in the cochlea in regard to hearing. However, detailed information about pannexin function in the cochlea and Panx mutation induced hearing loss still remain largely undetermined. Further studies are required.  相似文献   

8.
Purinergic signaling has considerable impact on the functioning of the nervous system, including the special senses. Purinergic receptors are expressed in various cell types in the retina, cochlea, taste buds, and the olfactory epithelium. The activation of these receptors by nucleotides, particularly adenosine-5′-triphosphate (ATP) and its breakdown products, has been shown to tune sensory information coding to control the homeostasis and to regulate the cell turnover in these organs. While the purinergic system of the retina, cochlea, and taste buds has been investigated in numerous studies, the available information about purinergic signaling in the olfactory system is rather limited. Using functional calcium imaging, we identified and characterized the purinergic receptors expressed in the vomeronasal organ of larval Xenopus laevis. ATP-evoked activity in supporting and basal cells was not dependent on extracellular Ca2+. Depletion of intracellular Ca2+ stores disrupted the responses in both cell types. In addition to ATP, supporting cells responded also to uridine-5′-triphosphate (UTP) and adenosine-5′-O-(3-thiotriphosphate) (ATPγS). The response profile of basal cells was considerably broader. In addition to ATP, they were activated by ADP, 2-MeSATP, 2-MeSADP, ATPγS, UTP, and UDP. Together, our findings suggest that supporting cells express P2Y2/P2Y4-like purinergic receptors and that basal cells express multiple P2Y receptors. In contrast, vomeronasal receptor neurons were not sensitive to nucleotides, suggesting that they do not express purinergic receptors. Our data provide the basis for further investigations of the physiological role of purinergic signaling in the vomeronasal organ and the olfactory system in general.  相似文献   

9.
Gap junctions play a critical role in hearing and mutations in connexin genes cause a high incidence of human deafness. Pathogenesis mainly occurs in the cochlea, where gap junctions form extensive networks between non-sensory cells that can be divided into two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. At least four different connexins have been reported to be present in the mammalian inner ear, and gap junctions are thought to provide a route for recycling potassium ions that pass through the sensory cells during the mechanosensory transduction process back to the endolymph. Here we review the cochlear gap junction networks and their hypothesized role in potassium ion recycling mechanism, pharmacological and physiological gating of cochlear connexins, animal models harboring connexin mutations and functional studies of mutant channels that cause human deafness. These studies elucidate gap junction functions in the cochlea and also provide insight for understanding the pathogenesis of this common hereditary deafness induced by connexin mutations. H.-B. Zhao, T. Kikuchi, A. Ngezahayo, T. W. White contributed equally to this article  相似文献   

10.
11.
Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate complex extracellular P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from this family (NTPDase1-8) are expressed in the adult rat cochlea. This study reports the changes in expression of NTPDase5 and NTPDase6 in the developing rat cochlea. These two intracellular members of the E-NTPDase family can be released in a soluble form and show preference for nucleoside 5′-diphosphates, such as UDP and GDP. Here, we demonstrate differential spatial and temporal patterns for NTPDase5 and NTPDase6 expression during cochlear development, which are indicative of both cytosolic and extracellular action via pyrimidines. NTPDase5 is noted during the early postnatal period in developing sensory hair cells and supporting Deiters’ cells of the organ of Corti, and primary auditory neurons located in the spiral ganglion. In contrast, NTPDase6 is confined to the embryonic and early postnatal hair cell bundles. NTPDase6 immunolocalisation in the developing cochlea underpins its putative role in hair cell bundle development, probably via cytosolic action, whilst NTPDase5 may have a broader extracellular role in the development of sensory and neural tissues in the rat cochlea. Both NTPDase5 and NTPDase6 colocalize with UDP-preferring P2Y4, P2Y6 and P2Y14 receptors during cochlear development, but this strong association was lost in the adult cochlea. Spatiotemporal topographic expression of NTPDase5 and NTPDase6 and P2Y receptors in adult and developing cochlear tissues provide strong support for the role of pyrimidinergic signalling in cochlear development.  相似文献   

12.
Physiological processes in the cochlea associated with sound transduction and maintenance of the unique electrochemical environment are metabolically demanding. Creatine maintains ATP homeostasis by providing high-energy phosphates for ATP regeneration which is catalyzed by creatine kinase (CK). Cellular uptake of creatine requires a specific high affinity sodium- and chloride-dependent creatine transporter (CRT). This study postulates that this CRT is developmentally regulated in the rat cochlea. CRT expression was measured by quantitative real-time RT-PCR and immunohistochemistry in the postnatal (P0–P14) and adult (P22–P56) rat cochlea. The maximum CRT expression was reached at the onset of hearing (P12), and this level was maintained through to adulthood. CRT immunoreactivity was strongest in the sensory inner hair cells, supporting cells and the spiral ganglion neurons. Cochlear distribution of the CK brain isoform (CKB) was also assessed by immunohistochemistry and compared with the distribution of CRT in the developing and adult cochlea. CKB was immunolocalized in the organ of Corti supporting cells, and the lateral wall tissues involved in K+ cycling, including stria vascularis and spiral ligament fibrocytes. Similar to CRT, CKB reached peak expression after the onset of hearing. Differential spatial and temporal expression of CRT and CK in cochlear tissues during development may reflect differential requirements for creatine–phosphocreatine buffering to replenish ATP consumed during energy-dependent metabolic processes, especially around the period when the cochlea becomes responsive to airborne sound.  相似文献   

13.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that can trigger a Ca(2+) wave prolongated between cells. This intercellular signaling was found defective in some gap junction connexin deafness mutants. In this study, the mechanism underlying IP(3) intercellular signaling in the cochlea was investigated. A gap junction channel is composed of two hemichannels. By using a fluorescence polarization technique to measure IP(3) concentration, the authors found that IP(3) could be released by gap junction hemichannels in the cochlea. The IP(3) release was increased about three- to fivefold by the reduction of extracellular Ca(2+) concentration or by mechanical stress. This incremental release could be blocked by gap junction blockers but not eliminated by a purinergic P2x receptor antagonist and verapamil, which is a selective P-glycoprotein inhibitor inhibiting the ATP-binding cassette transporters. The authors also found that IP(3) receptors were extensively expressed in the cochlear sensory epithelium, including on the cell surface. Extracellular application of IP(3) could trigger cellular Ca(2+) elevation. This Ca(2+) elevation was eliminated by the gap junction hemichannel blocker. These data reveal that IP(3) can pass through hemichannels acting as an extracellular mediator to participate in intercellular signaling. This hemichannel-mediated extracellular pathway may play an important role in long-distance intercellular communication in the cochlea, given that IP(3) only has a short lifetime in the cytoplasm.  相似文献   

14.
In the inner ear, there is considerable evidence that extracellular adenosine 5′-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca2+ concentration ([Ca2+]i) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca2+]i in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca2+ response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca2+ signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca2+ signalling in SGNs and supporting cells.  相似文献   

15.
ATP-gated non-selective cation channels assembled from P2X3 receptor subunits contribute to transduction and neurotransmitter signaling in peripheral sensory systems and also feature prominently in the development of the central nervous system. In this study, P2X3 receptor expression was characterized in the mouse cochlea from embryonic day 18 (E18) using confocal immunofluorescence. From E18 to P6, spiral ganglion neuron cell bodies and peripheral neurites projecting to the inner and outer hair cells were labeled. The inner spiral plexus associated with the inner hair cell synapses had a stronger fluorescence signal than outer spiral bundle fibers which provide the afferent innervation to the outer hair cells. Labeling in the cell bodies and peripheral neurites diminished around P6, and was no longer detected after the onset of hearing (P11, P17, adult). In opposition to the axiom that P2X3 expression is neuron-specific, inner and outer sensory hair cells were labeled in the base and mid turn region at E18, but at P3 only the outer hair cells in the most apical region of the cochlea continued to express the protein. These data suggest a role for P2X3 receptor-mediated purinergic signaling in cochlear synaptic reorganization, and establishment of neurotransmission, which occurs just prior to the onset of hearing function.  相似文献   

16.
The developing cochlea of mammals contains a large group of columnar-shaped cells, which together form a structure known as Kölliker’s organ. Prior to the onset of hearing, these inner supporting cells periodically release adenosine 5′-triphosphate (ATP), which activates purinergic receptors in surrounding supporting cells, inner hair cells and the dendrites of primary auditory neurons. Recent studies indicate that purinergic signaling between inner supporting cells and inner hair cells initiates bursts of action potentials in auditory nerve fibers before the onset of hearing. ATP also induces prominent effects in inner supporting cells, including an increase in membrane conductance, a rise in intracellular Ca2+, and dramatic changes in cell shape, although the importance of ATP signaling in non-sensory cells of the developing cochlea remains unknown. Here, we review current knowledge pertaining to purinergic signaling in supporting cells of Kölliker’s organ and focus on the mechanisms by which ATP induces changes in their morphology. We show that these changes in cell shape are preceded by increases in cytoplasmic Ca2+, and provide new evidence indicating that elevation of intracellular Ca2+ and IP3 are sufficient to initiate shape changes. In addition, we discuss the possibility that these ATP-mediated morphological changes reflect crenation following the activation of Ca2+-activated Cl channels, and speculate about the possible functions of these changes in cell morphology for maturation of the cochlea.  相似文献   

17.
Inner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules. Fibroblast growth factor (FGF) signalling is important during sensory specification: attenuation of Fgfr1 disrupts cochlear hair cell formation; however, the underlying mechanisms remain unknown. Here we report that in the absence of FGFR1 signaling, the expression of Sox2 within the sensory patch is not maintained. Despite the down-regulation of the prosensory domain markers, p27Kip1, Hey2, and Hes5, progenitors can still exit the cell cycle to form the zone of non-proliferating cells (ZNPC), however the number of cells that form sensory cells is reduced. Analysis of a mutant Fgfr1 allele, unable to bind to the adaptor protein, Frs2/3, indicates that Sox2 maintenance can be regulated by MAP kinase. We suggest that FGF signaling, through the activation of MAP kinase, is necessary for the maintenance of sensory progenitors and commits precursors to sensory cell differentiation in the mammalian cochlea.  相似文献   

18.
ATP contributes to mechanosensory transduction in the rat colorectum. P2X3 receptors are present on dorsal root ganglia (DRG) neurons that supply this area of the gut. Previous studies have shown an increased role for ATP in inflamed tissues. We aimed to investigate whether an increased purinergic component exists during mechanosensory transduction in a rat model of colitis. An in vitro rat colorectal preparation was used to investigate whether distension increased ATP release and to evaluate the role of purinergic antagonists in distension-evoked sensory discharges in the pelvic nerve in normal and colitis preparations. DRG neuron purinoceptors were also studied. Distension-evoked responses in the colitis model were attenuated to a significantly greater extent by 2',3'-O-trinitrophenyl-ATP and pyridoxyl 5-phosphate 6-azophenyl-2',4'-disulfonic acid. Inflammation caused augmented distension-evoked sensory nerve excitation after application of ATP and alpha,beta-methylene ATP. Single-fiber analysis confirmed that mean firing per unit was increased. Distension-evoked increases in ATP release from epithelial cells were substantially higher. The number of DRG neurons responding to ATP and the number of those staining for the P2X3 receptor, particularly those containing calcitonin gene-related peptide, were increased. Adenosine, after ectoenzymatic breakdown of ATP, is involved to a lesser degree in the longer-lasting distension-evoked sensory discharge, suggesting reduced ATPase activity. It was therefore concluded that ATP has an enhanced role in mechanosensory transduction in the inflamed rat colorectum. The underlying mechanisms appear to involve increased distension-evoked release of ATP as well as an increase in the number of DRG neurons supplying the colorectum expressing P2X3 receptors, especially those containing calcitonin gene-related peptide.  相似文献   

19.
20.
In mammalian taste buds, ionotropic P2X receptors operate in gustatory nerve endings to mediate afferent inputs. Thus, ATP secretion represents a key aspect of taste transduction. Here, we characterized individual vallate taste cells electrophysiologically and assayed their secretion of ATP with a biosensor. Among electrophysiologically distinguishable taste cells, a population was found that released ATP in a manner that was Ca(2+) independent but voltage-dependent. Data from physiological and pharmacological experiments suggested that ATP was released from taste cells via specific channels, likely to be connexin or pannexin hemichannels. A small fraction of ATP-secreting taste cells responded to bitter compounds, indicating that they express taste receptors, their G-protein-coupled and downstream transduction elements. Single cell RT-PCR revealed that ATP-secreting taste cells expressed gustducin, TRPM5, PLCbeta2, multiple connexins and pannexin 1. Altogether, our data indicate that tastant-responsive taste cells release the neurotransmitter ATP via a non-exocytotic mechanism dependent upon the generation of an action potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号