首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peritoneal (PM) and bone marrow-derived (BMM) macrophages and lung fibroblasts (LF) from inbred, intra-H-2 recombinant, H-2 mutant, and hybrid mice were infected with murine cytomegalovirus (MCMV) under centrifugal enhancement. At the concentration of virus employed, peritoneal macrophages from strains carrying Kd, Kb, Dd, KS and/or Ds, K4 and/or D4 alleles could be infected to a level of 80%–100%, as assessed by viral antigen expression or loss of Fc receptors. Cells lacking these haplotypes and carrying Kk, Kf, Dk, Df, or Db were resistant, yielding levels of infection below 20% . The background (non-H-2) and class II genotype and the S allele did not influence the proportions of cells infected. Furthermore, sensitivity was dominant in the F, progeny of H-2 b x H-2 k and H-2d x H-2 k crosses, and was not compromised by thebm1, bm3, bm10, or bm14 mutations in the al or2 regions of Kb orD b. The proportions of cells able to release infectious virus were low, but paralleled the frequencies of viral antigen expression. The class I genotype also determined susceptibility to MCMV infection in BMM and LF, although up to 35% of H-2 k BMM and 46% of H-2 k LF could be infected. The findings are consistent with an association between K and D antigens and a cellular receptor for MCMV on all three cell types.  相似文献   

2.
Knowledge of the mechanisms of virus dissemination in acute measles is cursory, but cells of the monocyte/macrophage (MM) lineage appear to be early targets. We characterized the dissemination of the Edmonston B vaccine strain of measles virus (MV-Ed) in peripheral blood mononuclear cells (PBMC) of two mouse strains expressing the human MV-Ed receptor CD46 with human-like tissue specificity and efficiency. In one strain the alpha/beta interferon receptor is defective, allowing for efficient MV-Ed systemic spread. In both mouse strains the PBMC most efficiently infected were F4/80-positive MMs, regardless of the inoculation route used. Circulating B lymphocytes and CD4-positive T lymphocytes were infected at lower levels, but no infected CD8-positive T lymphocytes were detected. To elucidate the roles of MMs in infection, we depleted these cells by clodronate liposome treatment in vivo. MV-Ed infection of splenic MM-depleted mice caused strong activation and infection of splenic dendritic cells (DC), followed by enhanced virus replication in the spleen. Similarly, depletion of lung macrophages resulted in strong activation and infection of lung DC. Thus, in MV infections of genetically modified mice, blood monocytes and tissue macrophages provide functions beneficial for both the virus and the host: they support virus replication early after infection, but they also contribute to protecting other immune cells from infection. Human MM may have similar roles in acute measles.  相似文献   

3.
Infection with Japanese encephalitis virus (JEV) is mostly asymptomatic/subclinical in 90% of the individuals. Host immune response during subclinical JEV infection is poorly understood. We assessed iNOS, IFN-gamma, TNF-alpha, IL-10 and IL-4 production in spleen, brain and sera of intraperitoneally challenged BALB/c mice by RT-PCR and ELISA along with brain histopathology at different days post inoculation (d.p.i.). In spleen of virus infected mice, expression of all cytokines including iNOS mRNA were upregulated till 5d.p.i. followed by decline. At 5d.p.i., IL-10 expression outcompeted TNF-alpha, IFN-gamma and IL-4. However, in the virus infected mice sera, IL-4 production predominated over TNF-alpha and IL-10 at 5d.p.i. Conversely, cytokines expression and iNOS mRNA remained unchanged in the brain of virus infected mice from 1 to 7d.p.i. A significant increase in the cytokine expression was observed at 11d.p.i. (P<0.05) in virus infected mice brain, with the predominance of IL-10 along with the presence of meningeal inflammation and viral RNA by histology and RT-PCR, respectively. We report a biased pattern of cytokine production in sera, brain and spleen of mice intraperitoneally challenged with JEV. IL-10 exerts neuroprotective function during JEV and regulates deleterious effects of proinflammatory cytokines; however, its mechanism needs further investigation.  相似文献   

4.
In macrophages from inbred mice, the magnitude of the interferon (IFN) response to Newcastle disease virus (NDV) infection is under genetic control of the If-1 locus, which carries the allele for either high (h) or low (l) IFN production. Here, we report that the activity of genes within the If-1 locus is influenced by macrophage-derived endogenous IFN. In addition to various other biological effects, we observed that endogenous IFN specifically downregulated NDV-induced IFN and interleukin 6 production. Preculture of bone marrow-derived macrophages (BMM) from BALB/c (If-1l) mice in macrophage colony-stimulating factor plus anti-IFN-beta provoked a 30- to 50-fold increase in NDV-induced cytokine production compared with induced control cultures in macrophage colony-stimulating factor alone, whereas only a 4- to 6-fold increase was observed in anti-IFN-beta-treated BMM from C57BL/6 (If-1h) mice. This resulted in nearly complete abrogation of the genetically determined difference in the response to NDV. The increase was specific for NDV and was marked by strong additional activation of IFN-alpha genes. Studies using BMM from B6.C-H28c If-1l congenic mice gave results identical to those obtained with BALB/c BMM. Addition of 20 IU of recombinant IFN-alpha 4 to anti IFN-beta-treated macrophages from B6.C-H28c mice 20 h prior to NDV infection strongly downregulated the IFN-alpha, IFN-beta, and interleukin 6 responses. The genetic difference between macrophages from If-1h and If-1l mice was thus reestablished, since the same treatment caused only weak reduction of NDV-induced cytokine gene expression in BMM from C57BL/6 mice. These data suggest that the If-1h and If-1l alleles harbor IFN-inducible genes that, following activation, specifically suppress subsequent cytokine gene expression in response to NDV.  相似文献   

5.
Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might partially be attributed to the immunosuppressive effect of nicotine.  相似文献   

6.
7.
Highly pathogenic H5N1 influenza virus causes coagulopathy in chickens   总被引:3,自引:0,他引:3  
Severe hemorrhage at multiple organs is frequently observed in chickens infected with highly pathogenic avian influenza (HPAI) A viruses. In this study we examined whether HPAI virus infection leads to coagulation disorder in chickens. Pathological examinations showed that the fibrin thrombi were formed in arterioles at the lung, associated with the viral antigens in endothelial cells of chickens infected intravenously with HPAI virus. Hematological analyses of peripheral blood collected from the chickens revealed that coagulopathy was initiated at early stage of infection when viral antigens were detected only in the endothelial cells and monocytes/macrophages. Furthermore, gene expression of the tissue factor, the main initiator of blood coagulation, was upregulated in the spleen, lung, and brain of HPAI virus-infected chickens. These results suggest that dysfunction of endothelial cells and monocytes/macrophages upon HPAI virus infection may induce hemostasis abnormalities represented by the excessive blood coagulation and consumptive coagulopathy in chickens.  相似文献   

8.
Mice were infected with lymphocytic choriomeningitis virus and injected once 24 h later with a monoclonal antibody directed against gamma interferon. In comparison with controls, the increase of numbers of CD8+ T cells and the generation of virus-specific cytotoxic T lymphocytes in spleens and virus clearance from organs were diminished, as was the ability of spleen cells to transmit adoptive immunity to infected recipients. The same treatment slightly but consistently lessened rather than augmented the virus titers early in infection, which was also observed in thymusless nu/nu mice. Injection into infected mice of the lymphokine itself in quantities probably higher than are produced endogenously resulted in lower virus titers in spleens but higher titers in livers. The adoptive immunity in infected mice achieved by infusion of immune spleen cells was not altered by treating the recipients with gamma interferon monoclonal antibody. Such treatment did not measurably affect the production of antiviral serum antibodies. We conclude that in lymphocytic choriomeningitis virus-infected mice, gamma interferon is needed for the generation of antivirally active CD8+ T lymphocytes, and furthermore that in this experimental model, direct antiviral effects of the lymphokine elude detection.  相似文献   

9.

Background

West Nile virus (WNV) can persist long term in the brain and kidney tissues of humans, non-human primates, and hamsters. In this study, mice were infected with WNV strain H8912, previously cultured from the urine of a persistently infected hamster, to determine its pathogenesis in a murine host.

Methodology/Principal Findings

We found that WNV H8912 was highly attenuated for neuroinvasiveness in mice. Following a systemic infection, viral RNA could be detected quickly in blood and spleen and much later in kidneys. WNV H8912 induced constitutive IL-10 production, upregulation of IFN-β and IL-1β expression, and a specific IgM response on day 10 post-infection. WNV H8912 persisted preferentially in kidneys with mild renal inflammation, and less frequently in spleen for up to 2.5 months post infection. This was concurrent with detectable serum WNV-specific IgM and IgG production. There were also significantly fewer WNV- specific T cells and lower inflammatory responses in kidneys than in spleen. Previous studies have shown that systemic wild-type WNV NY99 infection induced virus persistence preferentially in spleen than in mouse kidneys. Here, we noted that splenocytes of WNV H8912-infected mice produced significantly less IL-10 than those of WNV NY99-infected mice. Finally, WNV H8912 was also attenuated in neurovirulence. Following intracranial inoculation, WNV persisted in the brain at a low frequency, concurrent with neither inflammatory responses nor neuronal damage in the brain.

Conclusions

WNV H8912 is highly attenuated in both neuroinvasiveness and neurovirulence in mice. It induces a low and delayed anti-viral response in mice and preferentially persists in the kidneys.  相似文献   

10.
The replicase protein nsP2 of Semliki Forest virus (SFV) has a 648RRR nuclear localization signal and is transported to the nucleus. SFV-RDR has a single amino acid change which disrupts this sequence and nsP2 nuclear transport. In BHK cells, SFV4 and SFV-RDR replicate to high titers, but SFV-RDR is less virulent in mice. We compared the replication of SFV4 and SFV-RDR in adult mouse brain. Both SFV4 and SFV-RDR were neuroinvasive following intraperitoneal inoculation. SFV4 spread rapidly throughout the brain, whereas SFV-RDR infection was confined to small foci of cells. Both viruses infected neurons and oligodendrocytes. Both viruses induced apoptosis in cultured BHK cells but not in the cells of the adult mouse brain. SFV-RDR infection of mice lacking alpha/beta interferon receptors resulted in widespread virus distribution in the brain. Thus, a component of the viral replicase plays an important role in the neuropathogenesis of SFV.  相似文献   

11.
As a model for the study of human atypical mycobacterial disease, we explored the basis for the prolonged mycobacteriosis in mice infected with Mycobacterium intracellulare. Two weeks after i.v. injection of mycobacteria, peritoneal macrophages were found to be activated, as indicated by their capacity to produce large amounts of superoxide anion (O2-) in response to phorbol myristate acetate (PMA) or viable M. intracellulare. However, 4 wk after infection, despite the continued presence of large numbers of mycobacteria in the spleen, macrophages from infected animals produced low amounts of O2-. Unfractionated spleen cells from mice infected 4 wk earlier produced increased amounts of interleukin 2 and interferon (IFN) when stimulated with the mitogen concanavalin A, but less of these lymphokines than unstimulated cells when exposed to antigens derived from M. intracellulare, suggesting production of an inhibitory factor. Spleen cells from infected mice were not stimulated to incorporate [3H]thymidine by exposure to mycobacterial antigens; but this unresponsiveness could be reversed by addition of indomethacin to the cultures. Additional investigation showed that macrophages from infected animals produced large amounts of prostaglandin E2 (PGE2) when stimulated by mycobacterial antigens. In vitro, such concentrations of PGE2 inhibited uptake of [3H]thymidine by stimulated spleen lymphocytes from infected animals. Thus, it seemed likely that in infected animals, macrophage-derived PG suppressed production of IFN-gamma by lymphocytes, which in turn prevented activation of the macrophages to full microbicidal activity. To test this hypothesis, we administered either indomethacin, IFN-gamma, or muramyl dipeptide to infected mice. Mice treated with each of these agents showed decreased spleen and lung weights, and decreased numbers of viable mycobacteria in these organs. These results support the concept that interaction between the host and M. intracellulare is modulated profoundly by PG and suggest that administration of agents that directly promote macrophage activation can enhance resistance to infection by this organism.  相似文献   

12.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (gammaHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-alpha/betaR(-/-) mice cleared low-dose intranasal gammaHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-alpha/betaR(-/-) mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-alpha/beta from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-alpha/beta during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-alpha/betaR(-/-) mice. The mechanism of IFN-alpha/betaR action was distinct from that of IFN-gammaR, since IFN-alpha/betaR(-/-) mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-alpha/betaR(-/-) splenocytes. These data demonstrate that an IFN-alpha/beta-induced pathway regulates gammaHV68 gene expression patterns during latent viral infection in vivo and that IFN-alpha/beta plays a critical role in inhibiting viral reactivation during latency.  相似文献   

13.
After intraperitoneal inoculation with a high-virulent mouse hepatitis virus (MHV) a significant difference was seen in survival time between DDD and CDF1 (BALB/c × DDD) mice, while 50% lethal doses were not significantly different. With 3 × 103 PFU of the virus CDF1 and DDD mice died in 45 and 120 hr, respectively, on the average. This difference of susceptibility between DDD and CDF1 mice was first demonstrable at the age of 1 week and was more pronounced at the age of 4 weeks but showed no dependence on the sex. Virus titers ran 2 to 3 log higher in the liver and blood of CDF1 than in those of DDD mice, while being only 1 log higher in the spleen. At an early stage of infection viral antigen was demonstrable by immunofluorescence in sinusoidal lining cells of the liver more prominently in CDF1 than in DDD mice. Interferon production occurring in parallel with virus growth was significantly higher in CDF1 than in DDD mice. In DDD mice, liver lesions were rather focal with some accumulation of round cells, while they were confluent with poor cellular response in CDF1 mice. Viral growth in cultured peritoneal macrophages from CDF1 mice was 1 log higher than in those from DDD mice. The results suggest that the divergence in response to MHV among susceptible mice greatly depends upon the susceptibility of macrophages and reticuloendothelial cells which constitute primary targets of the virus.  相似文献   

14.
The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic β cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in β-cell destruction by producing soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 × 102 PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of β cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1β and TNF-α mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor κB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic β cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and β-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.Type 1 diabetes results from absolute insulin deficiency caused by destruction of insulin-producing pancreatic β cells. The D variant of encephalomyocarditis virus (EMC-D virus) induces diabetes in genetically susceptible strains of mice by infecting and destroying β cells (13-18). In mice infected with a low dose (1 × 102 PFU/mouse) of EMC-D virus, macrophages play a central role in the destruction of pancreatic β cells (4, 5, 13-15), as evidenced by a significant increase in the incidence of diabetes if macrophages are activated prior to viral infection and complete prevention of EMC-D virus-induced diabetes if macrophages are inactivated prior to viral infection (4). Additional studies found that selective EMC-D viral infection of pancreatic β cells results in an initial recruitment of macrophages into the islets, followed by infiltration of other immunocytes, including T cells, natural killer cells, and B cells (5).EMC-D virus infects and activates macrophages without replication (13) and induces the production of soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS), which play important roles in the destruction of β cells (14). These infected macrophages express significantly more iNOS than either IL-1β or TNF-α (13). Treatment of EMC-D virus-infected mice with the tyrosine kinase inhibitor AG126, which inhibits nitric oxide (NO) production in EMC-D virus-infected macrophages, decreases the expression of IL-1β and TNF-α in the pancreatic islets and the incidence of diabetes and insulitis compared with those in vehicle-treated control mice (13). As well, treatment of EMC-D virus-infected mice with an iNOS inhibitor decreases the incidence of diabetes (14). These results suggest that iNOS and NO significantly contribute to the destruction of pancreatic β cells in mice infected with a low dose of EMC-D virus, although their roles are not fully understood.To directly test whether iNOS and NO play a critical role in the pathogenesis of EMC-D virus-induced diabetes in mice, we used iNOS knockout (KO) DBA/2 mice. We found that iNOS-deficient mice infected with EMC-D virus (2 × 102 PFU/mouse) showed a significantly lower incidence of diabetes. There was reduced expression of IL-1β and TNF-α in macrophages and decreased infiltration of immunocytes in the islets of iNOS-deficient mice, resulting in reduced apoptosis of β cells compared with that in EMC-D virus-infected wild-type mice. This study provides direct evidence of a role of NO in the activation of macrophages by EMC-D viral infection and in the pathogenesis of low-dose (2 × 102 PFU/mouse) EMC-D virus-induced diabetes.  相似文献   

15.
Mycobacterium avium is a facultative intracellular opportunistic pathogen especially relevant in cases of people living with AIDS. The aim of this study was to evaluate the role of intercellular adhesion molecule 1 (ICAM-1) in the inflammatory response against M. avium infection. Mice deficient for ICAM-1 (ICAM KO) and infected with M. avium presented increased bacterial load in the spleen, liver and lungs compared to C57BL/6. Moreover, ICAM deficient mice presented reduced granuloma area in liver at 30 days post-infection with reduced numbers of lymphocytes and granulocytes. The assessment of in vitro cytokine production by ICAM KO spleen cells showed lower levels of IFN-γ compared to C57BL/6, whereas TNF-α remained unaltered. Additionally, the production of IFN-γ in liver and spleen tissues was also diminished in ICAM-1 KO mice. Interestingly, a persistent reduction in IFN-γ production was observed in CD3+NK1.1+ cells of ICAM-1 deficient mice compared to wild-type animals. Together, these results demonstrate the importance of ICAM-1 in the efficient control of M. avium infection and granuloma formation and highlights its role on CD3+NK1.1+ cell population as important for IFN-γ production during infection.  相似文献   

16.
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation.  相似文献   

17.
The effect of Semliki Forest virus (SFV) infection of murine spleen mononuclear cells was investigated in vitro. A small percentage of spleen macrophages expressed viral antigens, but no infectious virus particles were released, indicating an abortive-type infection. Wild-type SFV infected a higher percentage of macrophages than the attenuated, demyelinating mutant A7. The proliferation of spleen mononuclear cells under Con A stimulation was inhibited by the viral infection. The supernatant (SN) harvested from infected and Con A-stimulated spleen adherent cells could not stimulate thymocytes in an interleukin 1 (IL-1) assay and indomethacin treatment of infected cultures had no effect. The stimulatory effect of SN from noninfected cultures in the IL-1 assay was reduced when SN from infected cultures was added, suggesting the presence of an IL-1 inhibitor. Interleukin 2 (IL-2) production by splenocytes also decreased after viral infection, but exogenous IL-2 restored the response to Con A stimulation of infected spleen cells. This study demonstrates that abortive SFV infection of spleen macrophages has an immunosuppressive effect which may lead to an aberrant immune regulation.  相似文献   

18.
This study examined the kinetics and mechanisms of depressed spleen cell responses to phytohemagglutinin (PHA) that occur during Leishmania donovani infection of BALB/c mice. In co-culture experiments, neither spleen cells from infected animals nor parasite-infected macrophages suppressed PHA responses of normal spleen cells. In addition, parasite-mediated suppression of PHA-stimulated spleen cell proliferation could not be demonstrated. Mice with 2 wk of infection did manifest an impairment in spleen cell production of interleukin 2 (IL 2) and by 8 wk IL 2 activity in supernatants from these cells was reduced by approximately 95%. This finding was not explained by an alteration in the kinetics of IL 2 production. Furthermore, diminished IL 2 activity in supernatants of PHA-activated spleen cells from infected animals was not caused by suppressive factors in these fluids as shown by their inability to suppress IL 2 stimulation of IL 2-dependent T cells. When spleen cells from mice with 8 wk of infection were cultured with PHA and supplemented with exogenous IL 2, there was an approximately 48% increase in mitogenesis. These data indicate that abnormal PHA-induced spleen cell activation in BALB/c mice with L. donovani infection is associated with impaired production of IL 2. In addition, the observation that supplementation of spleen cells from infected mice with IL 2 resulted in partial reconstitution of the PHA response is consistent with a defect in IL 2 responsiveness.  相似文献   

19.
We studied the mechanism of in vitro spontaneous lymphokine production by spleen cells from mice injected intraperitoneally with murine coronavirus stain JHM 1 month after infection, when infectious virus had already been cleared from the spleens. Removal of either CD4+ T cells or Ia+ antigen-presenting cells (APC) from the spleen cells abrogated interleukin-2 (IL-2) production. Addition of anti-CD4 or anti-Iad monoclonal antibodies to the culture suppressed IL-2 production. These results suggest that the response involved typical receptor-mediated activation of T cells. Surprisingly, reciprocal mixing experiments with a coculture of T cells from infected mice and APC from either infected or naive mice resulted in the production of IL-2. The absence of viral antigens in spleen cells 1 month after infection, as indicated by their inability to induce the proliferation of T-cell clones specific for the viral antigens, suggest that the T cells from mice 1 month after infection were not responding to the viral antigens. The inoculum components other than the virus did not induce this immune response. We also found that the frequency of self-reactive but not alloreactive IL-2-producing T cells in the spleens of infected mice was 3- to 10-fold higher than that in naive mice. These findings suggest that an increased frequency of self-reactive T cells which secrete IL-2 occurs following murine coronavirus infection. This may have important implications in the development of autoimmunelike phenomena following murine coronavirus infection.  相似文献   

20.
Cytotoxic macrophages: a rapid nonspecific response to viral infection.   总被引:4,自引:0,他引:4  
In vitro and in vivo assays have been developed to study the relative contributions of various types of immune cytolysis in the destruction of infected cells after Semliki Forest virus infection of BALB/c mice. Highly cytotoxic activated macrophages, not specific for the infecting virus, appear on day 1, peak on day 2 to 3, and disappear within a week. Specifically sensitized T cells appear around day 3, peak on day 6, and disappear within a month. Cytotoxic antibody appears on day 4 and reaches high titers by day 8. Immune spleen cells greatly reduce the yield of virus from cultured cells. Infected cells rapidly disappear after transfer to infected animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号