首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recession of the water level of Lake Naivasha has incrementally exposed land surfaces creating a chronosequential transect representing durations of 1–30 years of exposure to grazing. This chronosequence provides a unique model to study the effects of land use duration on resource availability and resource base quality. Particularly, pasture quality changes in the riparian land of tropical fresh water lakes have so far not been studied. We assessed the effect of the duration of exposure to grazing on the biomass production, crude protein content and energy quality of pastures in a 4 × 4 latin square design (4 chronosequence positions × 4 soil types). Species composition was recorded and biomass was sampled at monthly intervals from February to August 2011. Soil moisture was recorded using frequency domain reflectometry sensors. Vegetation samples were analyzed for dry matter, nitrogen and metabolizable energy. Increased land use duration favored a shift in species dominance from Pennisetum clandestinum to Cynodon plectostachyus, which was associated with a reduction in dry matter yield and increased plant nitrogen content. All measured variables tended to be higher in soils formed on alluvial than in those formed on lacustrine deposits. Increased soil N and gravimetric moisture content stimulated biomass accumulation. The crude protein yield and metabolizable energy changed with phenological stages of the pasture and declined significantly towards maturity (seed setting of grasses). Continuous grazing and reduced soil moisture content, both during low rainfall and increased distance from the lake shore, affected the composition of pasture grasses as well as forage yield and quality. This may thus differentially affect the suitability of the riparian land as pasture ground and feed resource area for grazing animals.  相似文献   

2.
The influence of rainfall and initial pasture biomass on growth and dieback of pastures in temporary enclosures over quarterly periods was examined from 1980 to 1985 at Menindee in western New South Wales. Rainfall during the previous 12 months had the most influential effect on biomass of grazed pasture, and accounted for 69% of the variance. During quarterly periods, when the biomass of pasture protected from grazing increased, rainfall accounted for 93% of the variance. For all quarterly periods (whether pasture biomass increased or decreased) current rainfall accounted for 72% of the variance in biomass change (growth minus senescence) and initial biomass accounted for a further 14%. The growth response to rainfall was similar in pastures grazed by a combination of sheep and kangaroos and in those grazed by kangaroos alone.  相似文献   

3.
In many areas in Africa, seasonal movements of migratory ungulates are restricted and their population numbers decline, for example in the Tarangire region, Tanzania. Here, agriculture restricts migration of ungulates to their wet season ranges. We investigated whether low forage quality or supply are possible causes of population decline of wildebeest and zebra when access to these wet season ranges is restricted and migratory herds have to reside in the dry season range year-round. We simulated grazing through a clipping experiment in the dry season range during the wet season. Clipping negatively affected forage supply and had a positive effect on forage quality by increasing proportions of live and leaf biomass as well as nutrient concentrations in the leaves. However, increase in forage quality in the dry season range due to grazing was not as such that requirements of wildebeest during the wet season, when females are lactating, could be met. We conclude that low forage quality in the dry season range during the wet season could cause the decrease in migratory ungulate populations in the Tarangire region. With this study, the necessity of protecting wet season ranges from expanding human activities to safeguard migratory systems is supported.  相似文献   

4.
基于小嵩草(Kobresia parva)草甸连续2 a的牦牛放牧试验,研究了暖季和冷季放牧草场地上地下生物量及其分配规律、不同植物类群的绝对生长率生长率,探讨了放牧制度和放牧强度对不同植物类群补偿效应的影响。结果表明,随着放牧强度的增加地上总生物量呈减小趋势,放牧强度对暖季草场地上总生物量的影响极显著(P?0.01),对冷季草场地上总生物量的影响不显著(P?0.05);两季放牧草场各土壤层地下生物量随放牧强度的增加呈明显下降趋势,放牧强度对暖季放牧各土壤层地下生物量的影响显著(P?0.05),对冷季放牧各土壤层地下生物量的影响不显著(P?0.05);冷季放牧草场牧草生长季地下生物量与地上生物量的比值随放牧强度的增大而减小,暖季放牧草场对照区地下生物量与地上生物量的比值低于轻度放牧和中度放牧、高于重度放牧;暖季放牧草场各放牧处理不同植物类群均存在超补偿生长,但莎草科和禾本科植物的超补偿生长在8月份,阔叶植物的超补偿生长发生在6月和7月份,禾本科植物的超补偿生长效应强于莎草科植物和阔叶植物,轻度和中度放牧的补偿效应更明显;冷季放牧下不同植物类群也存在超补偿生长,但补偿效应不明现。因此,暖季适度(轻、中度)放牧利用更有利于产生超补偿生长,而重度利用对植被的稳定产生潜在的不利影响。  相似文献   

5.
In semi-arid West Africa, livestock are increasingly managed by sedentary producers in close proximity to expanding cropped lands. To evaluate the agricultural and environmental implications of this trend, a study was conducted to investigate the effect of grazing management on the spatial distribution of grazing pressure, the forage provided animals during the grazing period, and local herd-forage ratios across three agropastoral landscapes characterized by varying cultivation pressure. During the 19-month study period, data on herbaceous vegetation, livestock populations, and grazing itineraries were collected. These data were referenced to land units averaging 70 ha in area. Using this approach, each of 3,819 grazing itineraries was characterized as to: 1. the sum of the products of the palatable forage mass of a particular land unit and the time spent grazing by the herd within that unit (FAT, expressed in kg-hours ha−1); and 2. the average palatable herbaceous forage mass encountered by livestock across the itinerary weighted by the time spent in the land units crossed (FA, expressed in kg ha−1). The spatial dispersion of livestock grazing around human settlements was found to decline with a reduction in herding labor investment (herded>herd-release>free pasture). Multiple regression analyses of itinerary data demonstrate that both FAT and FA also decline with a reduction in herding labor investment. Herded and herd-release managed livestock were offered more palatable forage and grazed areas of higher forage availability than free-pastured animals. This supports arguments that as the investment of time and effort into herding declines, feed supply to livestock will decline and the potential for grazing-induced environmental change will increase.  相似文献   

6.
基于小嵩草(Kobresia parva)草甸连续2年的牦牛放牧控制试验,研究了暖季和冷季放牧草场植物群落数量特征的变化.结果表明:在2年的放牧期内,小嵩草草甸2季草场优良牧草的盖度随放牧强度的提高呈降低趋势,而杂草的盖度呈增加趋势;2季草场对照、轻度放牧和中度放牧组的优势种均为小嵩草和垂穗披碱草,但暖季草场重度放牧下主要优势种变为鹅绒委陵菜和阿拉善马先蒿,冷季草场重度放牧下小嵩草和鹅绒委陵菜为主要优势种;放牧强度之间的差异越大,2季草场各放牧处理间群落的相似性程度越低,说明放牧强度是引起群落差异的主要原因,也是群落变化的主导因子.2季草场各放牧处理的物种丰富度、多样性指数、均匀度指数在对照组最低,中度放牧组最高,其指数排序为:对照<轻度放牧<重度放牧<中度放牧,这一结果支持“中度干扰理论”.  相似文献   

7.
传统上估算蝗虫在放牧草场为害损失的方法几乎都是用来测定对牧草秋季产量的影响,而实际上,在估算放牧草场蝗虫为害损失及经济阈值时,牧草的现存量而非秋季产量是更应考虑的因素.本文提出了一种适合测定蝗虫对牧草现存生物量影响的新方法,即野外挂笼饲养与蝗虫种群动态相结合的估算方法,并在此基础上组建了放牧草场蝗虫种群经济阈值模型;α_0 α_1M_1_α_2M_2_ α_3S_1 α_4S_2=C其中,M_1:狭翅雏蝗生物量;M_2:宽须蚁蝗生物量;S_1:狭翅雏蝗平均个体重量,S_2:宽须蚁蝗平均个体重量;α_0-α_4:常数.同时引入蝗虫种群数量和生物量两项参数来表达蝗虫种群的发生程度.  相似文献   

8.
《Small Ruminant Research》2009,83(2-3):94-98
The aim of this work was to study the dynamics of parasitic nematode larvae of sheep (third larval stage), in tropical forage species. The experiment was composed of two different dry matter yield for each plant species, Pensacola grass (Paspalum saurae) and Aruana grass (Panicum maximum). The animals in the experiment were 28 Suffolk lambs that were 6–8 months old. Lambs were left in a naturally contaminated pasture for 86 days. A randomized design was adopted, collection of pasture was made every 15 days, separated into upper and lower portions and made larval enumeration. Lambs were evaluated by faecal egg count (FEC) to monitoring worm infection. The number of parasite larvae in both forages was similar (p > 0.05). However, higher (p < 0.05) infestation by helminth larvae in forage with lower dry matter yield, was observed in the upper portion of both plants studied. Animals with lower forage yield, for both forages, presented superior averages (p < 0.05) of FEC compared to higher forage yield pasture. Lambs grazing on Pensacola grass, with lower dry matter yield, showed increasing FECs over time. Lambs maintained on the pasture with higher yield of dry matter (Aruana) showed decreasing FECs over time. Similar results were observed when each pasture type was analysed for larval contamination. Epidemiologic and management implications are discussed in this work.  相似文献   

9.
Understanding the factors governing ecological stability in variable environments is a central focus of ecology. Functional diversity can stabilize ecosystem function over time if one group of species compensates for an environmentally driven decline in another. Although intuitively appealing, evidence for this pattern is mixed. We hypothesized that diverse functional responses to rainfall will increase the stability of vegetation cover and biomass across rainfall conditions, but that this effect depends on land-use legacies that maintain functional diversity. We experimentally manipulated grazing in a California grassland to create land-use legacies of low and moderate grazing, across which we implemented rainout shelters and irrigation to create dry and wet conditions over 3 years. We found that the stability of the vegetation cover was greatly elevated and the stability of the biomass was slightly elevated across rainfall conditions in areas with histories of moderate grazing. Initial functional diversity—both in the seed bank and aboveground—was also greater in areas that had been moderately grazed. Rainfall conditions in conjunction with this grazing legacy led to different functional diversity patterns over time. Wet conditions led to rapid declines in functional diversity and a convergence on resource-acquisitive traits. In contrast, consecutively dry conditions maintained but did not increase functional diversity over time. As a result, grazing practices and environmental conditions that decrease functional diversity may be associated with lasting effects on the response of ecosystem functions to drought. Our results demonstrate that theorized relationships between diversity and stability are applicable and important in the context of working grazed landscapes.  相似文献   

10.
11.
It is shown that an increase in grazing pressure in soils of dry steppes in Southern Tyva leads to an increase in the content of microbial biomass, a decrease in its specific activity, and a reduction in the numbers and species richness of oribatid mites. During pasture restoration for three years, the content of microbial biomass has decreased and its specific activity has increased, but the numbers and species richness of the oribatid mites community has not recovered.  相似文献   

12.
Abstract. Reduced weights in reindeer that graze in pastures with high reindeer densities have raised the question if coastal summer pastures are modified by grazing. To evaluate this, the impact of reindeer grazing on standing crop was measured by the plant intercept method inside and outside grazing exclosures in the understorey of a coastal mountain birch forest in northern Norway. The understories of coastal birch forests are dominated by vascular plants and are important summer pastures to reindeer. Based on the literature, we made a priori categorization of the vascular plant species into functional groups of preferred forage, less preferred forage and forage of unknown value to reindeer. Intercept frequency was measured within the same plots on three occasions in the summer of 1996. At the end of the grazing season, total standing crop was 33% lower in open plots compared to plots protected by exclosures. However, the reduction varied between the functional groups, with only preferred forage plants being significantly reduced in standing crop (by 49%). Results suggest that reindeer have a strong annual impact on most of the preferred forage species. However, some of the preferred graminoids are tolerant of grazing and dominate the understorey despite decades of high grazing pressure. We suggest that current grazing pressure is favouring the establishment of a few grazing tolerant graminoids, and that this reduces the forage plant variability. The results are discussed in relation to the grazing optimization hypothesis and the potential importance of plant variability for pasture quality.  相似文献   

13.
Grazed pastures have been historically used in Japan for animal production with little concern to biodiversity. However, pasturing has significant effects on biodiversity and productivity because it produces gaps in the distribution of vegetation due to animal activities. We hypothesized that different grazing activities would have effects on the diversity of plant species and forage quality in different ways and that the sward type would modify these effects. Therefore, we attempted to predict the diversity of plant species and changes in total nutrient content per area at the time since treatment on the basis of simulations of cattle activities in three pastures with different vegetation compositions. We created three ground types (grazed areas, cleared ground, and undisturbed areas) in three pastures (improved, partially improved semi-natural, and semi-natural pasture) and recorded the percentage cover of each plant within the plots. We repeatedly calculated the biodiversity indices from these community data by varying the sampling probabilities for each ground type, which provided us with the expected species diversity indices with the changing proportions of each ground type. Furthermore, we investigated the dry matter and forage qualities. For improved and partially improved semi-natural pasture, our models predicted that plant diversity increased as a saturating function of the proportion of cleared ground and grazed area relative to the undisturbed area, although our models also showed exponential curves for the semi-natural pasture. Forage samples from cleared ground plots and semi-natural pasture had the lowest forage quality among all pastures. Based on the predicted effects of cattle pasturing on the plant species biodiversity and forage quality, it may be more beneficial to maintain a small proportion of cleared ground in the improved pasture during intensive grazing.  相似文献   

14.
In this study, we inquire into the effects of short-term goat grazing abandonment on plant species and functional composition, bare ground and net primary productivity (NPP) in two traditionally grazed pastures located in the Canarian Network of Natural Protected Areas and the Natura 2000 Network. In addition, we analyse soil chemical properties, biomass tannin content and energetic value to find out how grazing abandonment affects soil fertility and forage quality of these agroecosystems. Grazing exclusion effects on plant species and functional composition, as well as on soil fertility depended on the productivity of the studied pasture. Erect forbs and shrubs (endemic to Macaronesian region and native) were favoured by grazing removal in the most productive pasture, while soil fertility decreased in the driest and least productive site. An increase in NPP after exclusion was consistent among study sites. Although we consider goat grazing as necessary for maintaining traditional agroecosystems, we also suggest controlling it over time, allowing some periods of rest to give endemic shrub species time to recover from near propagule sources.  相似文献   

15.
水分与氮素作为干旱和半干旱草原生产力的共同限制性因子在退化草原的生态快速修复过程中备受关注。以不同放牧强度背景下的短花针茅荒漠草原为研究对象,开展围封模拟放牧利用实验,同时添加氮素和水分。通过分析历史放牧强度与年份对生产力的影响,以及添加氮素和水分对不同功能群植物生物量的作用,探讨放牧强度对短花针茅草原生产力的内在作用机制,以及如何实现荒漠草原资源合理开发和可持续利用。研究结果显示,降雨量与放牧强度决定着短花针茅草原的植物群落结构。氮素和水分添加可分别提升11%-29%和12%-32%的群落地上生物量,且二者存在显著的交互作用。不同功能群植物的地上生物量对氮素与水分添加的响应存在差异,多年生丛生禾草对氮素和水分添加响应最敏感。氮素与水分添加可显著提高多年生丛生禾草的地上生物量,但与自然降水量相关。氮素添加对地上生物量的影响在正常降雨和稍旱年份作用显著,而水分添加在干旱年份作用显著。在正常降雨年份,以半灌木植物为优势种的轻度放牧背景以添加水分对提升生产力最宜,以多年生丛生禾草和半灌木为共优种的中度放牧背景和以多年生丛生禾草为优势种的重度放牧以同时添加水分和氮素对提升生产力最为宜;在干旱年份不同放牧强度背景下均以同时添加水分和氮素对提升生产力最为宜。我们的结果表明了养分与资源的改善有利于退化短花针茅草原的快速恢复和可持续生产。  相似文献   

16.
Aims Grazing and water availability are the primary drivers of vegetation dynamics in grazing-dominated regions of Mongolia with a semi-arid climate and frequent droughts. Nomadic animal husbandry still plays a large part in the economy of Mongolia, but more variable precipitation regime and increase in livestock number have severely affected grassland ecosystems through overgrazing, leading to pasture degradation. This study aimed to examine the effects of grazing exclusion, interannual variation of plant-available precipitation (PAP) and their interaction on the aboveground biomass (AGB) of each dominant species, the AGB of annual species and the total AGB in a Mongolian dry steppe, using long-term field data.Methods To detect the effect of grazing on vegetation dynamics, vegetation surveys were conducted in a non-grazed exclosure zone and a fully grazed area outside the exclosure. We assessed the effects of grazing, PAP and their interaction on AGB parameters using a generalized linear model. A detrended correspondence analysis (DCA) was used to visualize the effects of grazing and PAP on the AGB of each species.Important findings Grazing, PAP and their interaction had significant effects on AGB. The effect of grazing on AGB was larger with higher precipitation and higher amounts of AGB (i.e. forage) while AGB was strongly limited in drought years, which resulted in a smaller grazing effect. The current year PAP had the highest impact (r = 0.88, P < 0.01) on AGB. The dominance of annual species was characterized by the amount of PAP in the current and preceding years: annuals dominated in wet years that followed consecutive dry years. The DCA Axis 1 reflected the variation of AGB with interannual variation of PAP while the DCA Axis 2 differentiated the grazing effect. The DCA scatter diagram based on species score illustrated that Artemisia adamsii (an unpalatable herb) was clearly linked to grazing disturbance whereas palatable perennials such as Agropyron cristatum, Stipa krylovii and Cleistogenes squarrosa were related to grazing abandonment and wetter conditions. In brief, number of livestock, hence the grazing impacts on vegetation dynamic in this region could have driven by forage availability, which is mainly controlled by current-year PAP.  相似文献   

17.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

18.
本研究报道了1979年以来南非克留格尔国家公园暂时性沼泽边界对马羚( Hippotragus equinus equinus)种群下降的影响。干旱和由此导致的生境退化以及随之产生的食草动物之间的采食竞争是解释马羚种群数量下降的可能假说。我们认为,确定马羚的生境斑块选择并测定影响暂时性沼泽边界变化与马羚种群下降的关联性因子,可解释马羚种群下降的备择假说。在北部平原区,边界呈斑块状分布的沼泽是马羚的高矿质采食源。实施狩猎管理工程期间,人工做成的大多数水道分布于沼泽边界及其附近,造成马羚与其它食草动物的采食竞争和天敌捕食压力的增高。旱季降雨的缺乏,加上沼泽边界区域采食竞争以及天敌捕食压力,是引发马羚在北部平原生境普遍退化之前其种群提前下降的因素[动物学报52 (2) : 406 -409 , 2006]。  相似文献   

19.
Grazing management recommendations often sacrifice the intrinsic heterogeneity of grasslands by prescribing uniform grazing distributions through smaller pastures, increased stocking densities, and reduced grazing periods. The lack of patch-burn grazing in semi-arid landscapes of the western Great Plains in North America requires alternative grazing management strategies to create and maintain heterogeneity of habitat structure (e.g., animal unit distribution, pasture configuration), but knowledge of their effects on grassland fauna is limited. The lesser prairie-chicken (Tympanuchus pallidicinctus), an imperiled, grassland-obligate, native to the southern Great Plains, is an excellent candidate for investigating effects of heterogeneity-based grazing management strategies because it requires diverse microhabitats among life-history stages in a semi-arid landscape. We evaluated influences of heterogeneity-based grazing management strategies on vegetation structure, habitat selection, and nest and adult survival of lesser prairie-chickens in western Kansas, USA. We captured and monitored 116 female lesser prairie-chickens marked with very high frequency (VHF) or global positioning system (GPS) transmitters and collected landscape-scale vegetation and grazing data during 2013–2015. Vegetation structure heterogeneity increased at stocking densities ≤0.26 animal units/ha, where use by nonbreeding female lesser prairie-chickens also increased. Probability of use for nonbreeding lesser prairie-chickens peaked at values of cattle forage use values near 37% and steadily decreased with use ≥40%. Probability of use was positively affected by increasing pasture area. A quadratic relationship existed between growing season deferment and probability of use. We found that 70% of nests were located in grazing units in which grazing pressure was <0.8 animal unit months/ha. Daily nest survival was negatively correlated with grazing pressure. We found no relationship between adult survival and grazing management strategies. Conservation in grasslands expressing flora community composition appropriate for lesser prairie-chickens can maintain appropriate habitat structure heterogeneity through the use of low to moderate stocking densities (<0.26 animal units/ha), greater pasture areas, and site-appropriate deferment periods. Alternative grazing management strategies (e.g., rest-rotation, season-long rest) may be appropriate in grasslands requiring greater heterogeneity or during intensive drought. Grazing management favoring habitat heterogeneity instead of uniform grazing distributions will likely be more conducive for preserving lesser prairie-chicken populations and grassland biodiversity. © 2021 The Wildlife Society.  相似文献   

20.
The use of landscape zones and grass species by roan antelope, a species threatened with local extirpation within South Africa's Kruger National Park, were investigated. Plant‐based observations of grazing were made within a 300 ha enclosure in the roan range, where 40 roan antelope were confined at high density in the absence of other grazers. The study spanned the dry seasons of two years, one with average rainfall and one with low rainfall. We recorded changes in the extent of grazing of different grass species, height differences between grazed and ungrazed tillers and intensity of cropping per tuft. In the average year, the grazing pressure in the bottomland grassland was twice that in the upland savanna, with two tall grass species bearing the brunt of the grazing through the dry season. Two highly palatable upland grasses were also extensively grazed by the mid dry season. In the dry year, the extent of grazing in the upland exceeded that in the bottomland, and several upland grass species little used the previous year became heavily grazed. Roan antelope appeared to be separated ecologically from more common grazers by their selective use of tall grasses growing in the drainage line grassland during the critical dry season months. However, their grazing expansion into the upland savanna during the dry year potentially brought them into competition with these grazers. Nevertheless, their population performance did not suffer despite the high‐density conditions. Heightened predation pressure following an influx of these grazers, rather than resource limitation, appeared to be primarily responsible for the drastic decline of this species in the park.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号