首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal-regulated kinase-mitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate that ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 regulatory complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show that ERK colocalizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration.  相似文献   

2.
Members of the family of WASP-family Verprolin homologous proteins (WAVEs) activate the Arp2/3 complex to induce actin polymerization. The WAVE family comprises three proteins, namely, WAVE1, WAVE2 and WAVE3. Among them, WAVE2 is crucial for activation of the Arp2/3 complex for the formation of branched actin filaments in lamellipodia. Activation of mitogen-activated protein (MAP) kinase signalling results in the phosphorylation of the WAVE family proteins; however, which of the three WAVE proteins is phosphorylated is unclear. We found that in vitro WAVE2 is directly phosphorylated by a MAP kinase, i.e. extracellular signal-regulated kinase (ERK) 2. The proline-rich region and the verprolin, cofilin and acidic (VCA) region of WAVE2 were phosphorylated. Interestingly, the phosphorylated VCA region had a higher affinity for the Arp2/3 complex. However, the phosphorylation of the VCA region resulted in reduced induction of Arp2/3-mediated actin polymerization in vitro. The role of the phosphorylation of the proline-rich region was not determined.  相似文献   

3.
The WAVE/Scar proteins regulate actin polymerisation at the leading edge of motile cells via activation of the Arp2/3 complex in response to extracellular cues. Within cells they form part of a pentameric complex that is thought to regulate their ability to interact and activate the Arp2/3 complex. However, the exact mechanism for this is not known. We set out to assess whether phosphorylation of Scar1 by the non-receptor tyrosine kinase Src may influence the function of Scar1 and its ability to regulate Arp2/3-mediated actin polymerisation. We show that Scar1 is phosphorylated by Src in vitro and in vivo and identify tyrosine 125 as the major site in Scar1 to be phosphorylated in cells. Src-dependent phosphorylation of Scar1 on tyrosine 125 enhances its ability to bind to the Arp2/3 complex and regulates its ability to control actin polymerisation in cells. Thus, Src may act as an intermediary to regulate the activity of the Arp2/3 complex in response to external stimuli, via modulation of its interaction with WAVE/Scar proteins.  相似文献   

4.
Podosomes are dynamic cell adhesion structures that degrade the extracellular matrix, permitting extracellular matrix remodeling. Accumulating evidence suggests that actin and its associated proteins play a crucial role in podosome dynamics. Caldesmon is localized to the podosomes, and its expression is down-regulated in transformed and cancer cells. Here we studied the regulatory mode of caldesmon in podosome formation in Rous sarcoma virus-transformed fibroblasts. Exogenous expression analyses revealed that caldesmon represses podosome formation triggered by the N-WASP-Arp2/3 pathway. Conversely, depletion of caldesmon by RNA interference induces numerous small-sized podosomes with high dynamics. Caldesmon competes with the Arp2/3 complex for actin binding and thereby inhibits podosome formation. p21-activated kinases (PAK)1 and 2 are also repressors of podosome formation via phosphorylation of caldesmon. Consequently, phosphorylation of caldesmon by PAK1/2 enhances this regulatory mode of caldesmon. Taken together, we conclude that in Rous sarcoma virus-transformed cells, changes in the balance between PAK1/2-regulated caldesmon and the Arp2/3 complex govern the formation of podosomes.  相似文献   

5.
The WAVE regulatory complex (WRC), consisting of WAVE, Sra, Nap, Abi, and HSPC300, activates the Arp2/3 complex to control branched actin polymerization in response to Rac activation. How the WRC is assembled in vivo is not clear. Here we show that Nudel, a protein critical for lamellipodia formation, dramatically stabilized the Sra1-Nap1-Abi1 complex against degradation in cells through a dynamic binding to Sra1, whereas its physical interaction with HSPC300 protected free HSPC300 from the proteasome-mediated degradation and stimulated the HSPC300-WAVE2 complex formation. By contrast, Nudel showed little or no interactions with the Sra1-Nap1-Abi1-WAVE2 and the Sra1-Nap1-Abi1-HSPC300 complexes as well as the mature WRC. Depletion of Nudel by RNAi led to general subunit degradation and markedly attenuated the levels of mature WRC. It also abolished the WRC-dependent actin polymerization in vitro and the Rac1-induced lamellipodial actin network formation during cell spreading. Therefore, Nudel is important for the early steps of the WRC assembly in vivo by antagonizing the instability of certain WRC subunits and subcomplexes.  相似文献   

6.
WAVE2 belongs to a family of proteins that mediates actin reorganization by relaying signals from Rac to the Arp2/3 complex, resulting in lamellipodia protrusion. WAVE2 displays Arp2/3-dependent actin nucleation activity in vitro, and does not bind directly to Rac. Instead, it forms macromolecular complexes that have been reported to exert both positive and negative modes of regulation. How these complexes are assembled, localized and activated in vivo remains to be established. Here we use tandem mass spectrometry to identify an Abi1-based complex containing WAVE2, Nap1 (Nck-associated protein) and PIR121. Abi1 interacts directly with the WHD domain of WAVE2, increases WAVE2 actin polymerization activity and mediates the assembly of a WAVE2-Abi1-Nap1-PIR121 complex. The WAVE2-Abi1-Nap1-PIR121 complex is as active as the WAVE2-Abi1 sub-complex in stimulating Arp2/3, and after Rac activation it is re-localized to the leading edge of ruffles in vivo. Consistently, inhibition of Abi1 by RNA interference (RNAi) abrogates Rac-dependent lamellipodia protrusion. Thus, Abi1 orchestrates the proper assembly of the WAVE2 complex and mediates its activation at the leading edge in vivo.  相似文献   

7.
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.  相似文献   

8.
WAVE2 regulates T cell receptor (TCR)–stimulated actin cytoskeletal dynamics leading to both integrin clustering and affinity maturation. Although WAVE2 mediates integrin affinity maturation by recruiting vinculin and talin to the immunological synapse in an Arp2/3-dependent manner, the mechanism by which it regulates integrin clustering is unclear. We show that the Abl tyrosine kinase associates with the WAVE2 complex and TCR ligation induces WAVE2-dependent membrane recruitment of Abl. Furthermore, we show that WAVE2 regulates TCR-mediated activation of the integrin regulatory guanosine triphosphatase Rap1 via the recruitment and activation of the CrkL–C3G exchange complex. Moreover, we demonstrate that although Abl does not regulate the recruitment of CrkL–C3G into the membrane, it does affect the tyrosine phosphorylation of C3G, which is required for its guanine nucleotide exchange factor activity toward Rap1. This signaling node regulates not only TCR-stimulated integrin clustering but also affinity maturation. These findings identify a previously unknown mechanism by which the WAVE2 complex regulates TCR signaling to Rap1 and integrin activation.  相似文献   

9.
The actin cytoskeleton dynamically reorganizes the cytoplasm during cell morphogenesis. The actin-related protein (Arp)2/3 complex is a potent nucleator of actin filaments that controls a variety of endomembrane functions including the endocytic internalization of plasma membrane , vacuole biogenesis , plasma-membrane protrusion in crawling cells , and membrane trafficking from the Golgi . Therefore, Arp2/3 is an important signaling target during morphogenesis. The evolutionarily conserved Rac-WAVE-Arp2/3 pathway links actin filament nucleation to cell morphogenesis . WAVE translates Rac-GTP signals into Arp2/3 activation by regulating the stability and/or localization of the activator subunit Scar/WAVE . The WAVE complex includes Sra1/PIR121/CYFIP1, Nap1/NAP125, Abi-1/Abi-2, Brick1(Brk1)/HSPC300, and Scar/WAVE : Defining the in vivo function of each subunit is an important step toward understanding this complicated signaling pathway. Brk1/HSPC300 has been the most recalcitrant WAVE-complex protein and has no known function. In this paper, we report that Arabidopsis brick1 (brk1) is a member of the "distorted group" of trichome morphology mutants, a group that defines a WAVE-ARP2/3 morphogenesis pathway . In this paper we provide the first strong genetic and biochemical evidence that BRK1 is a critical WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2.  相似文献   

10.
Dynamic actin polymerization drives a variety of morphogenetic events during metazoan development. Members of the WASP/WAVE protein family are central nucleation-promoting factors. They are embedded within regulatory networks of macromolecular complexes controlling Arp2/3-mediated actin nucleation in time and space. WAVE (Wiskott-Aldrich syndrome protein family verprolin-homologous protein) proteins are found in a conserved pentameric heterocomplex that contains Abi, Kette/Nap1, Sra-1/CYFIP, and HSPC300. Formation of the WAVE complex contributes to the localization, activity, and stability of the various WAVE proteins. Here, we established the Bimolecular Fluorescence Complementation (BiFC) technique in Drosophila to determine the subcellular localization of the WAVE complex in living flies. Using different split-YFP combinations, we are able to visualize the formation of the WAVE-Abi complex in vivo. We found that WAVE also forms dimers that are capable of forming higher order clusters with endogenous WAVE complex components. The N-terminal WAVE homology domain (WHD) of the WAVE protein mediates both WAVE-Abi and WAVE-WAVE interactions. Detailed localization analyses show that formation of WAVE complexes specifically takes place at basal cell compartments promoting actin polymerization. In the wing epithelium, hetero- and homooligomeric WAVE complexes co-localize with Integrin and Talin suggesting a role in integrin-mediated cell adhesion. RNAi mediated suppression of single components of the WAVE and the Arp2/3 complex in the wing further suggests that WAVE-dependent Arp2/3-mediated actin nucleation is important for the maintenance of stable integrin junctions.  相似文献   

11.
The activity of the Wiskott-Aldrich syndrome-related WAVE3 protein is critical for the regulation of the Arp2/3-dependent cytoskeleton organization downstream of Rac-GTPase. The Ableson (Abl) non-receptor tyrosine kinase is also involved in the remolding of actin cytoskeleton in response to extracellular stimuli. Here we show that platelet-derived growth factor stimulation of cultured cells results in WAVE3-Abl interaction and localization to the cell periphery. WAVE3-Abl interaction promotes the tyrosine phosphorylation of WAVE3 by Abl, and STI-571, a specific inhibitor of Abl kinase activity, abrogates the Abl-mediated phosphorylation of WAVE3. We have also shown that Abl targets and phosphorylates four tyrosine residues in WAVE3 and that the Abl-dependent phosphorylation of WAVE3 is critical for the stimulation of lamellipodia formation and cell migration. Our results show that the activation of WAVE3 to promote actin remodeling is enhanced by the c-Abl-mediated tyrosine phosphorylation of WAVE3.  相似文献   

12.
Expansive Arp2/3 actin networks and contractile actomyosin networks can be spatially and temporally segregated within the cell, but the networks also interact closely at various sites, including adherens junctions. However, molecular mechanisms coordinating these interactions remain unclear. We found that the SCAR/WAVE complex, an Arp2/3 activator, is enriched at adherens junctions of the leading edge actomyosin cable during Drosophila dorsal closure. Myosin activators were both necessary and sufficient for SCAR/WAVE accumulation at leading edge junctions. The same myosin activators were previously shown to recruit the cytohesin Arf-GEF Steppke to these sites, and mammalian studies have linked Arf small G protein signaling to SCAR/WAVE activation. During dorsal closure, we find that Steppke is required for SCAR/WAVE enrichment at the actomyosin-linked junctions. Arp2/3 also localizes to adherens junctions of the leading edge cable. We propose that junctional actomyosin activity acts through Steppke to recruit SCAR/WAVE and Arp2/3 for regulation of the leading edge supracellular actomyosin cable during dorsal closure.  相似文献   

13.
How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.  相似文献   

14.
Torres E  Rosen MK 《Molecular cell》2003,11(5):1215-1227
Cells can retain information about previous stimuli to produce distinct future responses. The biochemical mechanisms by which this is achieved are not well understood. The Wiskott-Aldrich syndrome protein (WASP) is an effector of the Rho-family GTPase Cdc42, whose activation leads to stimulation of the actin nucleating assembly, Arp2/3 complex. We demonstrate that efficient phosphorylation and dephosphorylation of WASP at Y291 are both contingent on binding to activated Cdc42. Y291 phosphorylation increases the basal activity of WASP toward Arp2/3 complex and enables WASP activation by new stimuli, SH2 domains of Src-family kinases. The requirement for contingency in both phosphorylation and dephosphorylation enables long-term storage of information by WASP following decay of GTPase signals. This biochemical circuitry allows WASP to respond to the levels and timing of GTPase and kinase signals. It provides mechanisms to specifically achieve transient or persistent actin remodeling, as well as long-lasting potentiation of actin-based responses to kinases.  相似文献   

15.
Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.  相似文献   

16.
We report that WAVE1/Scar1, a WASP-family protein that functions downstream of Rac in membrane ruffling, can induce part of the reorganization of the actin cytoskeleton without Arp2/3 complex. WAVE1 has been reported to associate and activate Arp2/3 complex at its C-terminal region that is rich in acidic residues. The deletion of the acidic residues abolished the interaction with and the activation ability of Arp2/3 complex. The expression of the mutant WAVE1 lacking the acidic residues (DeltaA), however, induced actin-clustering in cells as the wild-type WAVE1 did. In addition, this actin-clustering could not be suppressed by the coexpression of the Arp2/3 complex-sequestering fragment (CA-region) derived from N-WASP, which clearly inhibits Rac-induced membrane ruffling. This study therefore demonstrates that WAVE1 reorganizes the actin cytoskeleton not only through Arp2/3 complex but also through another unidentified mechanism that may be important but has been neglected thus far.  相似文献   

17.
The Rho-GTPase Rac1 stimulates actin remodelling at the cell periphery by relaying signals to Scar/WAVE proteins leading to activation of Arp2/3-mediated actin polymerization. Scar/WAVE proteins do not interact with Rac1 directly, but instead assemble into multiprotein complexes, which was shown to regulate their activity in vitro. However, little information is available on how these complexes function in vivo. Here we show that the specifically Rac1-associated protein-1 (Sra-1) and Nck-associated protein 1 (Nap1) interact with WAVE2 and Abi-1 (e3B1) in resting cells or upon Rac activation. Consistently, Sra-1, Nap1, WAVE2 and Abi-1 translocated to the tips of membrane protrusions after microinjection of constitutively active Rac. Moreover, removal of Sra-1 or Nap1 by RNA interference abrogated the formation of Rac-dependent lamellipodia induced by growth factor stimulation or aluminium fluoride treatment. Finally, microinjection of an activated Rac failed to restore lamellipodia protrusion in cells lacking either protein. Thus, Sra-1 and Nap1 are constitutive and essential components of a WAVE2- and Abi-1-containing complex linking Rac to site-directed actin assembly.  相似文献   

18.
Cell migration is driven by actin polymerization at the leading edge of lamellipodia, where WASP family verprolin-homologous proteins (WAVEs) activate Arp2/3 complex. When fibroblasts are stimulated with PDGF, formation of peripheral ruffles precedes that of dorsal ruffles in lamellipodia. Here, we show that WAVE2 deficiency impairs peripheral ruffle formation and WAVE1 deficiency impairs dorsal ruffle formation. During directed cell migration in the absence of extracellular matrix (ECM), cells migrate with peripheral ruffles at the leading edge and WAVE2, but not WAVE1, is essential. In contrast, both WAVE1 and WAVE2 are essential for invading migration into ECM, suggesting that the leading edge in ECM has characteristics of both ruffles. WAVE1 is colocalized with ECM-degrading enzyme MMP-2 in dorsal ruffles, and WAVE1-, but not WAVE2-, dependent migration requires MMP activity. Thus, WAVE2 is essential for leading edge extension for directed migration in general and WAVE1 is essential in MMP-dependent migration in ECM.  相似文献   

19.
The dynamic actin cytoskeleton is important for a myriad of cellular functions, including intracellular transport, cell division, and cell shape. An important regulator of actin polymerization is the actin-related protein2/3 (Arp2/3) complex, which nucleates the polymerization of new actin filaments. In animals, Scar/WAVE family members activate Arp2/3 complex-dependent actin nucleation through interactions with Abi1, Nap1, PIR121, and HSCP300. Mutations in the Arabidopsis thaliana genes encoding homologs of Arp2/3 complex subunits PIR121 and NAP1 all show distorted trichomes as well as additional epidermal cell expansion defects, suggesting that a Scar/WAVE homolog functions in association with PIR121 and NAP1 to activate the Arp2/3 complex in Arabidopsis. In a screen for trichome branching defects, we isolated a mutant that showed irregularities in trichome branch positioning and expansion. We named this gene IRREGULAR TRICHOME BRANCH1 (ITB1). Positional cloning of the ITB1 gene showed that it encodes SCAR2, an Arabidopsis protein related to Scar/WAVE. Here, we show that itb1 mutants display cell expansion defects similar to those reported for the distorted class of trichome mutants, including disruption of actin and microtubule organization. In addition, we show that the scar homology domain (SHD) of ITB1/SCAR2 is necessary and sufficient for in vitro binding to Arabidopsis BRK1, the plant homolog of HSPC300. Overexpression of the SHD in transgenic plants causes a dominant negative phenotype. Our results extend the evidence that the Scar/WAVE pathway of Arp2/3 complex regulation exists in plants and plays an important role in regulating cell expansion.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) initiates receptor signaling and early actin dynamics during viral entry. This process is required for viral infection of primary targets such as resting CD4 T cells. WAVE2 is a component of a multiprotein complex linking receptor signaling to dynamic remodeling of the actin cytoskeleton. WAVE2 directly activates Arp2/3, leading to actin nucleation and filament branching. Although several bacterial and viral pathogens target Arp2/3 for intracellular mobility, it remains unknown whether HIV-1 actively modulates the Arp2/3 complex through virus-mediated receptor signal transduction. Here we report that HIV-1 triggers WAVE2 phosphorylation at serine 351 through gp120 binding to the chemokine coreceptor CXCR4 or CCR5 during entry. This phosphorylation event involves both Gαi-dependent and -independent pathways, and is conserved both in X4 and R5 viral infection of resting CD4 T cells and primary macrophages. We further demonstrate that inhibition of WAVE2-mediated Arp2/3 activity through stable shRNA knockdown of Arp3 dramatically diminished HIV-1 infection of CD4 T cells, preventing viral nuclear migration. Inhibition of Arp2/3 through a specific inhibitor, CK548, also drastically inhibited HIV-1 nuclear migration and infection of CD4 T cells. Our results suggest that Arp2/3 and the upstream regulator, WAVE2, are essential co-factors hijacked by HIV for intracellular migration, and may serve as novel targets to prevent HIV transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号