首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
During arbuscular mycorrhizal (AM) symbiosis, the plant gains access to phosphate (Pi) and nitrogen delivered by its fungal symbiont. Transfer of mineral nutrients occurs at the interface between branched hyphae called arbuscules and root cortical cells. In Medicago truncatula, a Pi transporter, PT4, is required for symbiotic Pi transport, and in pt4, symbiotic Pi transport fails, arbuscules degenerate prematurely, and the symbiosis is not maintained. Premature arbuscule degeneration (PAD) is suppressed when pt4 mutants are nitrogen-deprived, possibly the result of compensation by PT8, a second AM-induced Pi transporter. However, PAD is also suppressed in nitrogen-starved pt4 pt8 double mutants, negating this hypothesis and furthermore indicating that in this condition, neither of these symbiotic Pi transporters is required for symbiosis. In M. truncatula, three AMT2 family ammonium transporters are induced during AM symbiosis. To test the hypothesis that suppression of PAD involves AMT2 transporters, we analyzed double and triple Pi and ammonium transporter mutants. ATM2;3 but not AMT2;4 was required for suppression of PAD in pt4, while AMT2;4, but not AMT2;3, complemented growth of a yeast ammonium transporter mutant. In summary, arbuscule life span is influenced by PT4 and ATM2;3, and their relative importance varies with the nitrogen status of the plant.  相似文献   

2.
Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca2+) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca2+ oscillations. Among these an ion channel, Doesn''t Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca2+ ATPase is localized on both the inner and outer nuclear envelopes. Doesn''t Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca2+ into the nucleus. Ca2+ channels and Ca2+ pumps are needed for the release and reuptake of Ca2+ from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca2+ remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca2+ oscillations. This model can recapitulate Ca2+ oscillations, and with the inclusion of Ca2+-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.Plant growth is frequently limited by the essential nutrients nitrogen and phosphorus. Several plant species have established symbiotic relationships with microorganisms to overcome such limitations. In addition to the symbiotic relationship with arbuscular mycorrhizal fungi that many plants establish in order to secure their uptake of water, phosphorus, and other nutrients (Harrison, 2005; Parniske, 2008), legumes have developed interactions with bacteria called rhizobia, resulting in the fixation of atmospheric nitrogen within the plant root (Lhuissier et al., 2001; Gage, 2004; Riely et al., 2006).Root symbioses initiate with signal exchanges in the soil. Plant signals are perceived by the symbionts, triggering the successive release of microbial signals. For rhizobia, the signal molecules are lipochitooligosaccharides termed Nod factors (Dénarié et al., 1996), and the release of lipochitooligosaccharides has also been found in the fungal interaction (Maillet et al., 2011). Upon receiving diffusible signals from the microsymbionts, the plant roots initiate developmental programs that lead to infection by rhizobia or arbuscular mycorrhizal fungi. Both programs employ the same signaling pathway with several components being common to both mycorrhizal and rhizobial interactions (Kistner and Parniske, 2002; Lima et al., 2009). In particular, both the symbioses show characteristic perinuclear and nucleoplasmic localized calcium (Ca2+) oscillations, so-called Ca2+ spiking (Oldroyd and Downie, 2006; Sieberer et al., 2009). It has been suggested that Ca2+ is released from an internal store, most likely the nuclear lumen and associated endoplasmic reticulum (ER; Matzke et al., 2009), with targeted release in the nuclear region (Capoen et al., 2011).Genetic screens in the model legume Medicago truncatula have identified several genes that are required for the plant in the establishment of both symbioses. Two of these, Doesn’t Make Infections1 (DMI1) and DMI2, are essential for the induction of the Ca2+ oscillations, yet the precise roles and mechanisms of these components remain to be determined. DMI2 codes for a plasma membrane receptor-like kinase (Endre et al., 2002; Stracke et al., 2002) that is required to facilitate further signal transduction in the cell (Bersoult et al., 2005). DMI1 is a cation channel located preferentially on the inner nuclear envelope (Ané et al., 2004; Edwards et al., 2007; Riely et al., 2007; Charpentier et al., 2008; Capoen et al., 2011; Venkateshwaran et al., 2012). DMI3 encodes a calcium calmodulin-dependent protein kinase that interacts with downstream components and is thought to be the decoder of the Ca2+ oscillations (Lévy et al., 2004; Mitra et al., 2004; Hayashi et al., 2010). Additional genes coding for three nucleoporins called NUP85, NUP133, and NENA are also required for Ca2+ oscillations (Kanamori et al., 2006; Saito et al., 2007; Groth et al., 2010). The nuclear pore might be involved in trafficking secondary signals and/or ion channels to the inner nuclear membrane. These shared signaling components are collectively referred to as the common Sym pathway.DMI1 plays a key role in the production of Ca2+ oscillations, but its exact mechanism is still unknown. Orthologs of DMI1 have been found; in Lotus japonicus, they are called CASTOR and POLLUX (Charpentier et al., 2008), and in pea (Pisum sativum), SYM8 (Edwards et al., 2007). CASTOR and POLLUX, as well as calcium calmodulin-dependent protein kinase, are highly conserved both in legumes and nonlegumes (Banba et al., 2008; Chen et al., 2009). This highlights the essential role of the Ca2+ oscillations in mycorrhizal signaling.DMI1 is not the channel responsible for the release of Ca2+ (Charpentier et al., 2008; Parniske, 2008; Venkateshwaran et al., 2012) but probably influences the activity of Ca2+ channels. This is similar to how some K+ channels act in other plants and yeast (Peiter et al., 2007). Indeed, DMI1 is possibly a K+-permeable channel, based on the observation that POLLUX complements K+ transport in yeast (Charpentier et al., 2008). In symbiosis, the mode of action of DMI1 could be to allow cations into the nuclear envelope and in that way counterbalance the transmembrane charge that would occur following the release of Ca2+ into the nucleoplasm and cytoplasm. The cation channel could thus change the electrical potential across the nuclear membranes, affecting the opening of the voltage-activated Ca2+ channels (Edwards et al., 2007). This hypothesis is supported by a study reporting a membrane potential over the nuclear envelope in plants (Matzke and Matzke, 1986).Pharmacological evidence and the characteristics of the Ca2+ oscillations supports the involvement of Ca2+ pumps and Ca2+ channels (Engstrom et al., 2002). The pumps are needed to resequester Ca2+ after each release event, actively transporting Ca2+ against the concentration gradient using ATP. A recent study found a SERCA-type Ca2+ ATPase, MCA8, that is located on the inner and outer nuclear envelope of M. truncatula and is required for the symbiotic Ca2+ oscillations (Capoen et al., 2011). Such SERCA pumps are widely distributed on plant membranes, and the variation in their structure points to them being differentially regulated (Sze et al., 2000).Ca2+ channels release Ca2+ from the store, and the mechanism of activating these Ca2+ channels has been hypothesized to be voltage gated (Edwards et al., 2007; Oldroyd and Downie, 2008), but this remains to be verified experimentally. After release of Ca2+ into the cytosol and nucleoplasm, buffers quickly bind to and remove these free ions due to their toxicity to the cell (Sanders et al., 2002). Buffers, i.e. molecules that can bind Ca2+, may play an important role in determining the nonlinear behavior of the oscillatory system for Ca2+ signaling (Falcke, 2004). As numerous Ca2+ buffers are present in cells, it is important to take their contribution into account. Such buffers can also include experimentally introduced dyes and Ca2+ chelators.In Capoen et al. (2011), we investigated the establishment and transmission of spatial waves across the nuclear envelope and demonstrated that the key components for Ca2+ spiking reside on the inner and outer surface of the nuclear membrane. The computational framework we employed for this analysis makes a number of approximations in order to provide the computational efficiency required to perform spatiotemporal simulations. Here, a main focus is to understand the effect of buffers on the Ca2+ oscillations.In this article, we propose a mathematical model based on three key proteins; a Ca2+ ATPase, a voltage-gated Ca2+ channel, and the cation channel DMI1. The model reproduces the symbiotic Ca2+ oscillations, and we further demonstrate that Ca2+-binding proteins can explain initiation, termination, and experimentally observed variation in oscillation patterns. Furthermore, the model predicts that increases in buffering capacity can cause a period of rapid oscillations, and these were observed experimentally.  相似文献   

3.
In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs.Legumes possess the remarkable capacity to improve their nutrition by establishing a nitrogen-fixing root nodule symbiosis (RNS) with soil bacteria collectively called rhizobia. In many legumes such as Medicago truncatula, rhizobia penetrate across the root epidermis and outer cortex to reach the differentiating nodule tissues via sequentially constructed transcellular compartments known as infection threads (ITs; Gage, 2004). It is now well established that this mode of entry through specialized infection compartments, often referred to as accommodation, is shared with the more ancient arbuscular mycorrhizal (AM) symbiosis, from which the legume-Rhizobium RNS is thought to have evolved (Parniske, 2008; Markmann and Parniske, 2009). Furthermore, strong evidence indicates that the signaling and cellular mechanisms underlying IT formation in legumes are closely related to those used for infection compartment formation during AM infection of epidermal and outer cortical tissues (Bapaume and Reinhardt, 2012; Oldroyd, 2013).Rhizobial infection is set in motion after an initial molecular dialogue between symbiotic partners, in which rhizobial lipo-chitooligosaccharide (LCO) Nod factors (NFs) are key signaling molecules (for review, see Oldroyd, 2013). Host responses to NF signaling include rapid and sustained nuclear-associated Ca2+ oscillations (Ca2+ spiking; Ehrhardt et al., 1996; Oldroyd and Downie, 2006; Sieberer et al., 2009; Capoen et al., 2011) and the rapid expression of early epidermal marker genes such as M. truncatula EARLY NODULIN11 (Charron et al., 2004). The activation of nuclear Ca2+ spiking is one of the most characteristic features of the so-called common symbiotic signaling pathway, common to both RNS and AM (Kistner and Parniske, 2002; Singh and Parniske, 2012). Whereas these preinfection responses to NFs are observed in the majority of elongating root hairs (RHs) early after rhizobial inoculation (Journet et al., 2001; Wais et al., 2002), ITs are only formed in a small subset of RHs, and MtENOD11 expression is strongly activated at these rhizobial infection sites (Journet et al., 2001; Boisson-Dernier et al., 2005).ITs are tubular plant-derived structures delimited by a membrane that is contiguous with the RH plasmalemma and a layer of cell wall-like material, thus isolating the rhizobia from the host cell cytoplasm (Gage, 2004). These apoplastic infection compartments are progressively constructed along the length of the RH with their growing tip connected via a cytoplasmic bridge to the migrating RH nucleus. This broad cytoplasmic column provides the cell machinery for tip growth, which involves targeted exocytosis of membrane and extracellular materials to the growing apex of the IT (Oldroyd et al., 2011; Bapaume and Reinhardt, 2012). It is presumed that this cytoplasmic bridge shares an equivalent role to the prepenetration apparatus (PPA) formed at the onset of AM fungal infection (Genre et al., 2005, 2008). We now know that the IT tip region is formed in advance of rhizobial colonization and is progressively populated by dividing rhizobia that also physically move down the thread (Gage, 2004; Fournier et al., 2008). It has been proposed that the matrix of the growing IT tip is initially in a fluid or gel-like state compatible with bacterial growth and movement (Brewin, 2004; Fournier et al., 2008). This relative plasticity could result in part from the presence of atypical extracellular (glyco) proteins such as the repetitive Pro-rich proteins MtENOD11/MtENOD12 because their low Tyr content is presumed to limit cross linking to other wall components (Scheres et al., 1990; Pichon et al., 1992; Journet et al., 2001).Nevertheless, the mechanism by which rhizobial IT formation is initiated in RHs is not clear. Whereas AM fungal hyphae form contact structures called hyphopodia on the exposed surface of nonhair epidermal cells prior to PPA formation and perifungal infection compartment formation (Genre et al., 2005), rhizobial entry requires that the bacteria first become entrapped between RH walls. Attachment of rhizobia close to a growing RH tip induces a continuous reorientation of tip growth, most likely the result of localized NF production (Esseling et al., 2003), eventually leading to RH curling and subsequent bacterial entrapment within a closed chamber in the center of the curl (Catoira et al., 2001; Geurts et al., 2005). Rhizobial entrapment can also occur between the cell walls of two touching RHs (Dart, 1974; Gage, 2004).The closed chamber in curled RHs has often been termed the infection pocket (e.g. Murray, 2011; Guan et al., 2013). However, because this term is also used to designate a quite different and larger structure formed in root subepidermal tissues of legumes during intercellular infection after crack entry and involving localized cell death (Goormachtig et al., 2004), we propose to use the term infection chamber to describe the unique enclosure formed during rhizobial RH infection.After entrapment, it has been proposed that rhizobia multiply to form a so-called microcolony (Gage et al., 1996; Limpens et al., 2003), and that IT polar growth initiates in front of this microcolony by local invagination of the RH plasmalemma combined with exocytosis of extracellular materials (Gage, 2004). Furthermore, it has been suggested that localized degradation of the chamber wall would allow the rhizobia to access the newly formed IT (Callaham and Torrey, 1981; Turgeon and Bauer, 1985). However, a detailed investigation of this particular stage of rhizobial infection is lacking, particularly concerning when and where the rhizobia/cell wall interface becomes modified. Such studies have been limited until now, notably because ITs develop only in a low proportion of curled RHs (Dart, 1974).To attempt to answer this question, we have used a live-tissue imaging approach developed for in vivo confocal microscopy in M. truncatula (Fournier et al., 2008; Cerri et al., 2012; Sieberer et al., 2012) and particularly well adapted to time-lapse studies of the initial stages of rhizobial infection, including RH curling and IT formation. To investigate modifications occurring at the RH interface with the enclosed rhizobia during these early stages, we prepared M. truncatula plants expressing fluorescent protein fusions aimed at detecting both exocytosis activity and cell wall remodeling during the initial construction of the IT apoplastic compartment. To this end, we made use of the M. truncatula Vesicle-Associated Membrane Protein721e (MtVAMP721e; Ivanov et al., 2012), recently shown to label exocytosis sites both in growing RHs and during AM colonization (Genre et al., 2012), as well as the infection- and cell wall-associated MtENOD11 Pro-rich glycoprotein (Journet et al., 2001). Our experiments have revealed that IT development in curled RHs only initiates after a lengthy interval of 10 to 20 h, during which sustained exocytosis and MtENOD11 secretion to the infection chamber are associated with radial expansion as well as remodeling of the surrounding walls. Importantly, it was found that the infection-defective M. truncatula nodule inception-1 (Mtnin-1) mutant (Marsh et al., 2007) is impaired in chamber remodeling. Our findings led us to propose a new model for IT formation in which the infection chamber first differentiates into a globular apoplastic compartment displaying similarities to the future IT, and in which the enclosed rhizobia multiply. This is then followed by a switch from radial to tubular growth corresponding to tip-driven IT growth and associated movement of rhizobia into the extending thread. Importantly, this two-step model no longer requires that the host cell wall is degraded to allow access of the colonizing rhizobia to the newly initiated IT.  相似文献   

4.
The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates.  相似文献   

5.
6.
7.
8.
9.
Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.  相似文献   

10.
Divinyl reductase (DVR) converts 8-vinyl groups on various chlorophyll intermediates to ethyl groups, which is indispensable for chlorophyll biosynthesis. To date, five DVR activities have been detected, but adequate evidence of enzymatic assays using purified or recombinant DVR proteins has not been demonstrated, and it is unclear whether one or multiple enzymes catalyze these activities. In this study, we systematically carried out enzymatic assays using four recombinant DVR proteins and five divinyl substrates and then investigated the in vivo accumulation of various chlorophyll intermediates in rice (Oryza sativa), maize (Zea mays), and cucumber (Cucumis sativus). The results demonstrated that both rice and maize DVR proteins can convert all of the five divinyl substrates to corresponding monovinyl compounds, while both cucumber and Arabidopsis (Arabidopsis thaliana) DVR proteins can convert three of them. Meanwhile, the OsDVR (Os03g22780)-inactivated 824ys mutant of rice exclusively accumulated divinyl chlorophylls in its various organs during different developmental stages. Collectively, we conclude that a single DVR with broad substrate specificity is responsible for reducing the 8-vinyl groups of various chlorophyll intermediates in higher plants, but DVR proteins from different species have diverse and differing substrate preferences, although they are homologous.Chlorophyll (Chl) molecules universally exist in photosynthetic organisms. As the main component of the photosynthetic pigments, Chl molecules perform essential processes of absorbing light and transferring the light energy in the reaction center of the photosystems (Fromme et al., 2003). Based on the number of vinyl side chains, Chls are classified into two groups, 3,8-divinyl (DV)-Chl and 3-monovinyl (MV)-Chl. The DV-Chl molecule contains two vinyl groups at positions 3 and 8 of the tetrapyrrole macrocycle, whereas the MV-Chl molecule contains a vinyl group at position 3 and an ethyl group at position 8 of the macrocycle. Almost all of the oxygenic photosynthetic organisms contain MV-Chls, with the exceptions of some marine picophytoplankton species that contain only DV-Chls as their primary photosynthetic pigments (Chisholm et al., 1992; Goericke and Repeta, 1992; Porra, 1997).The classical single-branched Chl biosynthetic pathway proposed by Granick (1950) and modified by Jones (1963) assumed the rapid reduction of the 8-vinyl group of DV-protochlorophyllide (Pchlide) catalyzed by a putative 8-vinyl reductase. Ellsworth and Aronoff (1969) found evidence for both MV and DV forms of several Chl biosynthetic intermediates between magnesium-protoporphyrin IX monomethyl ester (MPE) and Pchlide in Chlorella spp. mutants. Belanger and Rebeiz (1979, 1980) reported that the Pchlide pool of etiolated higher plants contains both MV- and DV-Pchlide. Afterward, following the further detection of MV- and DV-tetrapyrrole intermediates and their biosynthetic interconversion in tissues and extracts of different plants (Belanger and Rebeiz, 1982; Duggan and Rebeiz, 1982; Tripathy and Rebeiz, 1986, 1988; Parham and Rebeiz, 1992, 1995; Kim and Rebeiz, 1996), a multibranched Chl biosynthetic heterogeneity was proposed (Rebeiz et al., 1983, 1986, 1999; Whyte and Griffiths, 1993; Kolossov and Rebeiz, 2010).Biosynthetic heterogeneity refers to the biosynthesis of a particular metabolite by an organelle, tissue, or organism via multiple biosynthetic routes. Varieties of reports lead to the assumption that Chl biosynthetic heterogeneity originates mainly in parallel DV- and MV-Chl biosynthetic routes. These routes are interconnected by 8-vinyl reductases that convert DV-tetrapyrroles to MV-tetrapyrroles by conversion of the vinyl group at position 8 of ring B to the ethyl group (Parham and Rebeiz, 1995; Rebeiz et al., 2003). DV-MPE could be converted to MV-MPE in crude homogenates from etiolated wheat (Triticum aestivum) seedlings (Ellsworth and Hsing, 1974). Exogenous DV-Pchlide could be partially converted to MV-Pchlide in barley (Hordeum vulgare) plastids (Tripathy and Rebeiz, 1988). 8-Vinyl chlorophyllide (Chlide) a reductases in etioplast membranes isolated from etiolated cucumber (Cucumis sativus) cotyledons and barley and maize (Zea mays) leaves were found to be very active in the conversion of exogenous DV-Chlide a to MV-Chlide a (Parham and Rebeiz, 1992, 1995). Kim and Rebeiz (1996) suggested that Chl biosynthetic heterogeneity in higher plants may originate at the level of DV magnesium-protoporphyrin IX (Mg-Proto) and would be mediated by the activity of a putative 8-vinyl Mg-Proto reductase in barley etiochloroplasts and plastid membranes. However, since these reports did not use purified or recombinant enzyme, it is not clear whether the reductions of the 8-vinyl groups of various Chl intermediates are catalyzed by one enzyme of broad specificity or by multiple enzymes of narrow specificity, which actually has become one of the focus issues in Chl biosynthesis.Nagata et al. (2005) and Nakanishi et al. (2005) independently identified the AT5G18660 gene of Arabidopsis (Arabidopsis thaliana) as an 8-vinyl reductase, namely, divinyl reductase (DVR). Chew and Bryant (2007) identified the DVR BciA (CT1063) gene of the green sulfur bacterium Chlorobium tepidum, which is homologous to AT5G18660. An enzymatic assay using a recombinant Arabidopsis DVR (AtDVR) on five DV substrates revealed that the major substrate of AtDVR is DV-Chlide a, while the other four DV substrates could not be converted to corresponding MV compounds (Nagata et al., 2007). Nevertheless, a recombinant BciA is able to reduce the 8-vinyl group of DV-Pchlide to generate MV-Pchlide (Chew and Bryant, 2007). Recently, we identified the rice (Oryza sativa) DVR encoded by Os03g22780 that has sequence similarity with the Arabidopsis DVR gene AT5G18660. We also confirmed that the recombinant rice DVR (OsDVR) is able to not only convert DV-Chlide a to MV-Chlide a but also to convert DV-Chl a to MV-Chl a (Wang et al., 2010). Thus, it is possible that the reductions of the 8-vinyl groups of various Chl biosynthetic intermediates are catalyzed by one enzyme of broad specificity.In this report, we extended our studies to four DVR proteins and five DV substrates. First, ZmDVR and CsDVR genes were isolated from maize and cucumber genomes, respectively, using a homology-based cloning approach. Second, enzymatic assays were systematically carried out using recombinant OsDVR, ZmDVR, CsDVR, and AtDVR as representative DVR proteins and using DV-Chl a, DV-Chlide a, DV-Pchlide a, DV-MPE, and DV-Mg-Proto as DV substrates. Third, we examined the in vivo accumulations of various Chl intermediates in rice, maize, and cucumber. Finally, we systematically investigated the in vivo accumulations of Chl and its various intermediates in the OsDVR (Os03g22780)-inactivated 824ys mutant of rice (Wang et al., 2010). The results strongly suggested that a single DVR protein with broad substrate specificity is responsible for reducing the 8-vinyl groups of various intermediate molecules of Chl biosynthesis in higher plants, but DVR proteins from different species could have diverse and differing substrate preferences even though they are homologous.  相似文献   

11.
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.  相似文献   

12.
13.
14.
15.
16.
17.
Most plant species form symbioses with arbuscular mycorrhizal (AM) fungi, which facilitate the uptake of mineral nutrients such as phosphate from the soil. Several transporters, particularly proton-coupled phosphate transporters, have been identified on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. The mechanism of nutrient exchange has been studied in plants during mycorrhizal colonization, but the source of the electrochemical proton gradient that drives nutrient exchange is not known. Here, we show that plasma membrane H+-ATPases that are specifically induced in arbuscule-containing cells are required for enhanced proton pumping activity in membrane vesicles from AM-colonized roots of rice (Oryza sativa) and Medicago truncatula. Mutation of the H+-ATPases reduced arbuscule size and impaired nutrient uptake by the host plant through the mycorrhizal symbiosis. Overexpression of the H+-ATPase Os-HA1 increased both phosphate uptake and the plasma membrane potential, suggesting that this H+-ATPase plays a key role in energizing the periarbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号