首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive experimental evidence has established a significant role of calciferol in the maintenance of normal calcium homeostasis. Present knowledge indicates that vitamin D3 must first be converted to 25-OH-D3 and then to 1,25(OH)2D3, the most active known form of the steroid. Many of the factors regulating the rate of production of this last steroid from its precurser have been evaluated, and the concept that vitamin D functions as a steroid hormone seems to be well established.Deranged action of calciferol, caused by impaired metabolism of the steroid or through altered sensitivity of target tissues, may be involved in the pathophysiology of several disease states with abnormal calcium metabolism.It is noted that liver disease, osteomalacia due to anticonvulsant therapy, chronic renal failure, hypophosphatemic rickets, hypoparathyroidism, hyperparathyroidism, sarcoidosis and idiopathic hypercalciuria have possible relation to alterations in metabolism or action of vitamin D.The future clinical availability of 1,25(OH)2D3 and other analogs of this steroid may offer potential therapeutic benefit in the treatment of certain of the disease entities discussed.  相似文献   

2.
The active form of Vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], has potent antiproliferative actions on various normal and malignant cells. Calcemic effects, however, hamper therapeutic application of 1,25-(OH)(2)D(3) in hyperproliferative diseases. Two 14-epi-analogs of 1,25-(OH)(2)D(3) namely 19-nor-14-epi-23-yne-1,25-(OH)(2)D(3) (TX522) and 19-nor-14,20-bisepi-23-yne-1,25-(OH)(2)D(3) (TX527), display reduced calcemic effects coupled to an (at least 10-fold) increased antiproliferative potency when compared with 1,25-(OH)(2)D(3). Altered cofactor recruitment by the Vitamin D receptor (VDR) might underlie the superagonism of these 14-epi-analogs. Therefore, this study aims to evaluate their effects at the level of VDR-coactivator interactions. Mammalian two-hybrid assays with VDR and the coactivators TIF2 and DRIP205 showed the 14-epi-analogs to be more potent inducers of VDR-coactivator interactions than 1,25-(OH)(2)D(3). TX522 and TX527 require 30- and 40-fold lower doses to obtain the VDR-DRIP205 interaction induced by 1,25-(OH)(2)D(3) at 10(-8)M. Evaluation of additional 1,25-(OH)(2)D(3)-analogs and their impact on VDR-coactivator interactions revealed a strong correlation between the antiproliferative potency of an analog and its ability to induce VDR-coactivator interactions. In conclusion, these data show that altered coactivator binding by the VDR is one possible explanation for the superagonistic action of the two 14-epi-analogs TX522 and TX527.  相似文献   

3.
Abstract: Parkinson's disease may be linked to defects in mitochondrial function. Mitochondrially transformed cells (cybrids) were created from Parkinson's disease patients or disease-free controls. Parkinson's disease cybrids had 26% less complex I activity, but maintained comparable basal calcium and energy levels. Parkinson's disease cybrids recovered from a carbachol-induced increase in cytosolic calcium 53% more slowly than controls even with lanthanum and thapsigargin blockade. Inhibition of complex I with the Parkinson's disease-inducing metabolite 1-methyl-4-phenylpyridinium (MPP+) similarly reduced the rate of recovery after carbachol. This MPP+-induced reduction in recovery rates was much more pronounced in control cybrids than in Parkinson's disease cybrids. Parkinson's disease cybrids had less carbonyl cyanide m -chlorophenylhydrazone-releasable calcium. Bypassing complex I with succinate partially restored Parkinson's disease cybrid, and MPP+ suppressed control cybrid recovery rates. The subtle alteration in calcium homeostasis of Parkinson's disease cybrids may reflect an increased susceptibility to cell death under circumstances not ordinarily toxic.  相似文献   

4.
线粒体和细胞内钙自稳平衡   总被引:10,自引:0,他引:10  
线粒体对胞浆钙信号调节作用的研究已经历较长时间.近年,随着研究方法和技术的不断改进,发现在绝大多数生理条件下,线粒体都能参与胞内钙通信过程.线粒体可感受其周围钙微区的存在从而摄取钙,又可以通过钠-钙交换和大分子孔道将钙释放出来,因此可以调节胞浆钙信号的时空特性,影响相关的细胞功能.但是,由于技术上的局限性,目前的研究仍然存在模糊不清和自相矛盾之处,有待于进一步研究.  相似文献   

5.

Objective

In recent years, vitamin D has been shown to possess a wide range of immunomodulatory effects. Although there is extensive amount of research on vitamin D, we lack a comprehensive understanding of the prevalence of vitamin D deficiency or the mechanism by which vitamin D regulates the human immune system. This study examined the prevalence and correlates of vitamin D deficiency and the relationship between vitamin D and the immune system in healthy individuals.

Methods

Healthy individuals (n = 774) comprised of European-Americans (EA, n = 470), African–Americans (AA, n = 125), and Native Americans (NA, n = 179) were screened for 25-hydroxyvitamin D [25(OH)D] levels by ELISA. To identify the most noticeable effects of vitamin D on the immune system, 20 EA individuals with severely deficient (<11.3 ng/mL) and sufficient (>24.8 ng/mL) vitamin D levels were matched and selected for further analysis. Serum cytokine level measurement, immune cell phenotyping, and phosphoflow cytometry were performed.

Results

Vitamin D sufficiency was observed in 37.5% of the study cohort. By multivariate analysis, AA, NA, and females with a high body mass index (BMI, >30) demonstrate higher rates of vitamin D deficiency (p<0.05). Individuals with vitamin D deficiency had significantly higher levels of serum GM-CSF (p = 0.04), decreased circulating activated CD4+ (p = 0.04) and CD8+ T (p = 0.04) cell frequencies than individuals with sufficient vitamin D levels.

Conclusion

A large portion of healthy individuals have vitamin D deficiency. These individuals have altered T and B cell responses, indicating that the absence of sufficient vitamin D levels could result in undesirable cellular and molecular alterations ultimately contributing to immune dysregulation.  相似文献   

6.
Ganglioside Function in Calcium Homeostasis and Signaling   总被引:1,自引:0,他引:1  
Ganglioside function in eukaryotic cells encompasses a variety of modulatory interactions related to both development and mature cellular behavior. In relation to the nervous system this includes induction of neurite outgrowth and trophic/neuroprotective phenomena; more generally this applies to ganglioside effects on receptor function, adhesion reactions, and signal transduction mechanisms in neural and extraneural systems. Underlying many of these trophic effects are ganglioside-induced changes in cellular calcium, accomplished through modulation of Ca2+ influx channels, Ca2+ exchange proteins, and various Ca2+-dependent enzymes that are altered through association with gangliosides. A clear distinction needs to be drawn between intrinsic functions of gangliosides as naturally expressed by the cell and activities created by application of exogenous ganglioside(s) that may or may not reflect natural function. This review attempts to summarize findings in this area and point to possible future directions of research.  相似文献   

7.
Abstract: Rats fed diets deficient in calcium or vitamin D for 4 weeks displayed hypocalcemia, as indicated by a 50% reduction in serum calcium and a sevenfold elevation of serum parathyroid hormone. These treatments also decreased the calcium content of brain tissue. On a regional basis. this effect was greatest in the brain stem (24% decrease) and least in striatum (10% decrease). Subcellular analysis indicated that the depletion of brain calcium was greatest in the soluble and the microsomal fractions. Infusion of calcium solutions reversed the depletion of brain calcium produced by dietary deficiencies. In control rats. parathyroidectomy or infusion of parathyroid hormone did not alter the calcium content of brain tissue, although these treatments affected the levels of calcium in the serum. In general, these treatments had no effect on the magnesium content of serum or brain tissue. However, vitamin D deficiency did increase the magnesium content of the myelin and synaptosomal fractions. This increase was reversed by parathyroidectomy. These observations demonstrate that long-term hypocalcemia produces distinct changes in the localization of calcium and magnesium in brain tissue. Furthermore. these studies suggest that though brain calcium levels are influenced by serum concentrations, serum changes must be of large magnitude and long duration for brain calcium levels to be affected.  相似文献   

8.

Background

Despite a significant improvement in the management of chronic kidney disease (CKD), its incidence and prevalence has been increasing over the years. Progressive renal fibrosis is present in CKD and involves the participation of several cytokines, including Transforming growth factor-β1 (TGF-β1). Besides cardiovascular diseases and infections, several studies show that Vitamin D status has been considered as a non-traditional risk factor for the progression of CKD. Given the importance of vitamin D in the maintenance of essential physiological functions, we studied the events involved in the chronic kidney disease progression in rats submitted to ischemia/reperfusion injury under vitamin D deficiency (VDD).

Methods

Rats were randomized into four groups: Control; VDD; ischemia/reperfusion injury (IRI); and VDD+IRI. At the 62 day after sham or IRI surgery, we measured inulin clearance, biochemical variables and hemodynamic parameters. In kidney tissue, we performed immunoblotting to quantify expression of Klotho, TGF-β, and vitamin D receptor (VDR); gene expression to evaluate renin, angiotensinogen, and angiotensin-converting enzyme; and immunohistochemical staining for ED1 (macrophages), type IV collagen, fibronectin, vimentin, and α-smooth mucle actin. Histomorphometric studies were performed to evaluate fractional interstitial area.

Results

IRI animals presented renal hypertrophy, increased levels of mean blood pressure and plasma PTH. Furthermore, expansion of the interstitial area, increased infiltration of ED1 cells, increased expression of collagen IV, fibronectin, vimentin and α-actin, and reduced expression of Klotho protein were observed. VDD deficiency contributed to increased levels of plasma PTH as well as for important chronic tubulointerstitial changes (fibrosis, inflammatory infiltration, tubular dilation and atrophy), increased expression of TGF-β1 and decreased expression of VDR and Klotho protein observed in VDD+IRI animals.

Conclusion

Through inflammatory pathways and involvement of TGF-β1 growth factor, VDD could be considered as an aggravating factor for tubulointerstitial damage and fibrosis progression following acute kidney injury induced by ischemia/reperfusion.  相似文献   

9.
Both calcium and vitamin D play important roles in cardiac muscle contraction and performance. In this cross-sectional study, we evaluated the status of serum calcium, PTH and 25(OH)D3 and their correlation with left ventricular Function and NYHA Functional class in 95 heart failure patients referred to Shahid Chamran Hospital, Isfahan, Iran, by colorimetric, immunoradiometric, and Immunochemiluminescent assays, echocardiography and interview respectively. The study was performed between Oct 2007 and Feb 2008. Twenty eight women and 67 men of functional classes 1, 2, or 3 participated in the study. Mean (SD) of age of the participants was 62(11)?years. Mean (SD) serum calcium and 25(OH)D3 were 2.41(0.16)?mmol/L and 56.78(51.33)?nmol/L, respectively. The overall prevalence of low vitamin D status was 84.2%. There was no correlation between serum calcium and 25(OH)D3 with LVEF. Interestingly, patients with hyperparathyroidism (serum PTH>65 ng/L) had lower LVEF (27% versus 32.5% p?=?0.03). NYHA functional class was worse in patients with hyperparathyroidism (p?=?0.08). Hypovitaminosis D is very prevalent in heart failure patients. Hyperparathyroidism in these patients may adversely affect cardiac function. Vitamin D3 might serve as an adjunctive treatment for heart failure patients.  相似文献   

10.
The regulation of cytosolic calcium was studied in digitonin-permeabilized chromaffin cells. Accumulation of 45Ca2+ by permeabilized cells was measured at various Ca2+ concentrations in the incubation solutions. In the absence of ATP, there was a small (10–15% of total uptake) but significant increase in accumulation of Ca2+ into both the vesicular and nonvesicular pools. In the presence of ATP, the permeabilized cells accumulated Ca2+ into carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-sensitive and -insensitive pools. The CCCP-sensitive pool—mainly mitochondria—was active when the calcium concentration was > 1 μM and was not saturated at 25 μM. The Ca2+ sequestered by the CCCP-insensitive pool could be inhibited by vanadate and released by inositol trisphosphate, a combination suggesting that this pool was the endoplasmic reticulum. The CCCP-insensitive pool had a high affinity for calcium, with an EC50 of ~1 μM. When the Ca2+ concentration was adjusted to the level in the cytoplasm of resting cells (0.1 μM), the presumed endoplasmic reticulum pool was responsible for ~90% of the ATP-stimulated calcium uptake. At a calcium level similar to the acetylcholine-stimulated level in intact cells (5–10 μM), most of the Ca2+ (>95%) went into the CCCP-sensitive pool.  相似文献   

11.
Fedirko  N.  Vats  Ju.  Klevets  M.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2002,34(2-3):127-129
We showed that 5 M acetylcholine (ACh) and 100 M norepinephrine (NE) cause increases in the total Ca2+ content in acinar cells by 30 and 87% and in the exocytosis intensity by 15 and 20%, respectively. Application of 5 M ACh and 100 M NE increased the free cytosolic Ca2+ concentration ([Ca2+] i ) by 87 ± 2 and 140 ± 7 nM, respectively. Application of ACh and NE in a Ca2+-free external solution caused a [Ca2+] i increase that was 40 and 67% lower than in physiological solution. We postulate that the exocytosis developing upon neural stimulation of the gland results from generation of Ca2+ transients that are spreading from the basal to the apical region of the exocrine cell, where secretory granules are concentrated.  相似文献   

12.
《Endocrine practice》2008,14(1):10-17
ObjectiveTo investigate the efficacy of cholecalciferol (vitamin D3) in raising serum 25-hydroxyvitamin D (25[OH)]D) levels and reducing parathyroid hormone (PTH) levels in patients with chronic kidney disease (CKD).MethodsIn this double-blind, randomized controlled pilot study, participants with CKD stage 3 and 4 (estimated glomerular filtration rate, 15-59 mL/min/1.73 m2), vitamin D insufficiency (serum 25[OH]D < 30 ng/mL), and serum intact PTH levels > 70 pg/mL were randomly assigned to receive either 50 000 IU of cholecalciferol or placebo once weekly for 12 weeks. Primary outcomes (25[OH]D and PTH levels) were measured at baseline, week 6, and week 12. Secondary outcomes (1,25-dihydroxvitamin D and bone turnover markers) were measured at baseline and week 12. Because of skewed data distribution, statistical analyses were performed on a logarithmic scale. The difference between the group means was exponentiated to provide the geometric mean ratio. A linear mixed model using an unstructured variance-covariance matrix was used to examine change in the primary and secondary outcomes over time.ResultsGeometric mean serum 25(OH)D concentrations of the study groups were similar at baseline (P = .77). At week 6, a significant difference between the treatment and placebo groups was detected (P = .001); this difference was maintained at week 12 (P = .002). Among cholecalciferol- treated participants, serum 25(OH)D concentration increased on average from 17.3 ng/mL (95% confidence interval [CI], 11.8-25.2) at baseline to 49.4 ng/mL (95% CI, 33.9-72.0) at week 12. As-treated analysis indicated a trend toward lower PTH levels among cholecalciferol-treated participants (P = .07).ConclusionWeekly cholecalciferol supplementation appears to be an effective treatment to correct vitamin D status in patients with CKD. (Endocr Pract. 2008;14:10-17)  相似文献   

13.
Objective:To examine bone mass and metabolism in women who had previously undergone Roux‐en‐Y gastric bypass (RYGB) and determine the effect of supplementation with calcium (Ca) and vitamin D. Research Methods and Procedures: Bone mineral density and bone mineral content (BMC) were examined in 44 RYGB women (≥3 years post‐surgery; 31% weight loss; BMI, 34 kg/m2) and compared with age‐ and weight‐matched control (CNT) women (n = 65). In a separate analysis, RYGB women who presented with low bone mass (n = 13) were supplemented to a total 1.2 g Ca/d and 8 μg vitamin D/d over 6 months and compared with an unsupplemented CNT group (n = 13). Bone mass and turnover and serum parathyroid hormone (PTH) and 25‐hydroxyvitamin D were measured. Results:Bone mass did not differ between premenopausal RYGB and CNT women (42 ± 5 years), whereas postmenopausal RYGB women (55 ± 7 years) had higher bone mineral density and BMC at the lumbar spine and lower BMC at the femoral neck. Before and after dietary supplementation, bone mass was similar, and serum PTH and markers of bone resorption were higher (p < 0.001) in RYGB compared with CNT women and did not change significantly after supplementation. Discussion: Postmenopausal RYGB women show evidence of secondary hyperparathyroidism, elevated bone resorption, and patterns of bone loss (reduced femoral neck and higher lumbar spine) similar to other subjects with hyperparathyroidism. Although a modest increase in Ca or vitamin D does not suppress PTH or bone resorption, it is possible that greater dietary supplementation may be beneficial.  相似文献   

14.
Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP−/−) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP−/− mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT) in KRAP−/− mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAP−/− mice, although UCP (Uncoupling protein) expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC)-1, ACC-2 and fatty acid synthase in the liver of KRAP −/− mice, which could in part account for the metabolic phenotype in KRAP−/− mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases.  相似文献   

15.

Aim

Altered vitamin D signaling is associated with cardiac dysfunction, but the pathogenic mechanism is not clearly understood. We examine the mechanism and the role of vitamin D signaling in the development of cardiac dysfunction.

Methods and Results

We analyzed 1α-hydroxylase (1α-OHase) knockout (1α-OHase−/−) mice, which lack 1α-OH enzymes that convert the inactive form to hormonally active form of vitamin D. 1α-OHase−/− mice showed modest cardiac hypertrophy at baseline. Induction of pressure overload by transverse aortic constriction (TAC) demonstrated exaggerated cardiac dysfunction in 1α-OHase−/− mice compared to their WT littermates with a significant increase in fibrosis and expression of inflammatory cytokines. Analysis of calcium (Ca2+) transient demonstrated profound Ca2+ handling abnormalities in 1α-OHase−/− mouse cardiomyocytes (CMs), and treatment with paricalcitol (PC), an activated vitamin D3 analog, significantly attenuated defective Ca2+ handling in 1α-OHase−/− CMs. We further delineated the effect of vitamin D deficiency condition to TAC by first correcting the vitamin D deficiency in 1α-OHase−/− mice, followed then by either a daily maintenance dose of vitamin D or vehicle (to achieve vitamin D deficiency) at the time of sham or TAC. In mice treated with vitamin D, there was a significant attenuation of TAC-induced cardiac hypertrophy, interstitial fibrosis, inflammatory markers, Ca2+ handling abnormalities and cardiac function compared to the vehicle treated animals.

Conclusions

Our results provide insight into the mechanism of cardiac dysfunction, which is associated with severely defective Ca2+ handling and defective vitamin D signaling in 1α-OHase−/− mice.  相似文献   

16.
17.
《Endocrine practice》2013,19(3):497-510
ObjectiveTo review the role of human large bowel microbacteria (microbiota) in the glucose homeostasis, to address vitamin D (VD) and prebiotics interactions with microbiota, and to summarize recent randomized clinical trials (RCTs) of VD and prebiotics supplementation in prediabetes (PreDM) and type 2 diabetes mellitus (T2DM).MethodsPrimary literature was reviewed in the following areas: composition and activity of human microbiota associated with PreDM and T2DM, interactions between microbiota and glucose homeostasis, the interaction of microbiota with VD/prebiotics, and RCTs of VD/prebiotics in subjects with PreDM or T2DM.ResultsThe human microbiota is comprised of 100 trillion bacteria with an aggregate genome that is 150-fold larger than the human genome. Data from the animal models and human studies reveal that an “obesogenic” diet results into the initial event of microbiota transformation from symbiosis to dysbiosis. The microbial antigens, such as Gram(-) bacteria and lipopolysaccharide (LPS), translocate to the host interior and trigger increased energy harvesting and Toll-like receptor (TLR) activation with subsequent inflammatory pathways signaling. The “double hit” of steatosis (ectopic fat accumulation) and “—itis” (inflammation) and contribution of “corisks” (e.g., vitamin D deficiency [VDD]) are required to activate molecular signaling, including impaired insulin signaling and secretion, that ends with T2DM and associated diseases. Dietary changes (e.g., prebiotics, VD supplementation) may ameliorate this process if initiated prior to the process becoming irreversible.ConclusionEmerging evidence suggests an important role of microbiota in glucose homeostasis. VD supplementation and prebiotics may be useful in managing PreDM and T2DM. (Endocr Pract. 2013;19:497-510)  相似文献   

18.
Abstract: A large body of evidence suggests that disturbances of Ca2+ homeostasis may be a causative factor in the neurotoxicity induced by excitatory amino acids (EAAs). The route or routes by which an increase in intracellular calcium concentration ([Ca2+]i) is mediated in vivo are presently not clarified. This may partly reflect the complexity of intact nervous tissue in combination with the relative unspecific action of the available “calcium antagonists,” e.g., blockers of voltage-sensitive calcium channels. By using primary cultures of cortical neurons as a model system, it has been found that all EAAs stimulate increases in [Ca2+]i but via different mechanisms. By using the drug dantrolene, it has been shown that 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA) apparently exclusively stimulates Ca2+ influx through agonist-operated calcium channels and voltage-operated calcium channels. Increased [Ca2+]i due to exposure to kainate (KA) is for the major part caused by influx, as in the case of AMPA, but a small part of the increase in [Ca2+]i may be attributed to a release of Ca2+ from intracellular stores. Quisqualate (QA) stimulates Ca2+ release from an intracellular store that is independent of Ca2+ influx; presumably this store is activated by inositol phosphates. The increase in [Ca2+]i due to exposure to glutamate or N-methyl-d -aspartate (NMDA) may be compartmentalized into three components, one of which is related to influx and the other two to Ca2+ release from internal stores. Only one of the latter stores is dependent on Ca2+ influx with regard to release of Ca2+, whereas the other is activated by some other second messengers or, alternatively, directly coupled to the receptor. In muscles dantrolene is known to inhibit Ca2+ release from the sarcoplasmic reticulum, and also in neurons dantrolene inhibits an equivalent release from one or more hitherto unidentified internal Ca2+ pool(s). By using this drug it has been possible to show to what extent these Ca2+ stores are involved in the toxicity observed subsequent to exposure to the EAAs. It turned out that dantrolene, even under conditions allowing Ca2+ influx, inhibited toxicity induced by QA, NMDA, and glutamate, whereas that induced by AMPA or KA was unaffected. In combination with the findings that dantrolene inhibited release from the intracellular stores activated by QA, NMDA, and glutamate, it may be concluded that Ca2+ influx per se is not the primary event causing toxicity following exposure to these EAAs in these neurons. However, it may certainly be involved in the cases of toxicity induced by AMPA and KA. Finally, it should be pointed out that this model only serves as a much simplified working hypothesis and that the situation in vivo is much more complex.  相似文献   

19.
Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC). Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days) of rat testes to 43°C led to accumulation of neutral lipids. This SC-specific lipid function took 1–2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43°C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms'' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin) and microfilament (f-actin) organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.  相似文献   

20.
To determine if microbial species play an active role in the development of calcium carbonate (CaCO 3 ) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO 3 . The majority of these isolates could precipitate CaCO 3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca 2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca 2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca 2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C 13 O 2 to determine whether atmospheric CO 2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO 2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca 2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca 2+ -rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO 3 deposits within caves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号