共查询到20条相似文献,搜索用时 8 毫秒
1.
Michelotti N Johnson-Buck A Manzo AJ Walter NG 《Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology》2012,4(2):139-152
Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA 'staples'. This revolutionary approach has led to the creation of a multitude of two-dimensional and three-dimensional scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy. 相似文献
2.
Here we provide a detailed protocol for the analysis of protein-linked glycans on DNA sequencing equipment. This protocol satisfies the glyco-analytical needs of many projects and can form the basis of 'glycomics' studies, in which robustness, high throughput, high sensitivity and reliable quantification are of paramount importance. The protocol routinely resolves isobaric glycan stereoisomers, which is much more difficult by mass spectrometry (MS). Earlier methods made use of polyacrylamide gel-based sequencers, but we have now adapted the technique to multicapillary DNA sequencers, which represent the state of the art today. In addition, we have integrated an option for HPLC-based fractionation of highly anionic 8-amino-1,3,6-pyrenetrisulfonic acid (APTS)-labeled glycans before rapid capillary electrophoretic profiling. This option facilitates either two-dimensional profiling of complex glycan mixtures and exoglycosidase sequencing, or MS analysis of particular compounds of interest rather than of the total pool of glycans in a sample. 相似文献
3.
4.
Restriction endonuclease fragment patterns of mitochondrial DNA (mtDNA) in sheep were analysed with 11 enzymes. Four breeds (Merinolandschaf, Rhoenschaf, Schwarzkoepfiges Fleischschaf and Skudde) of domestic sheep and European Mouflon were examined. A restriction map with 28 cleavage sites of seven enzymes was established. KpnI and PstI do not cut ovine mtDNA. Two EcoRI fragments of Merinolandschaf, Rhoenschaf and Mouflon each were cloned and partially sequenced. Intraspecific nucleotide sequence differences within 1.101 kb ranged from 0.09 to 0.27%. Hybridization analysis with a fragment of porcine mtDNA along with sequencing data from cloned fragments was used for orientation of the restriction map along the bovine sequence. Ovine mtDNA sequences encompassing parts of the Cyt.b-, ND5-, CoIII- and ATPase6 genes were compared with the corresponding sequences of the bovine mtDNA. 相似文献
5.
6.
7.
Yue Wei Qinqin Huang Xihao Tian Mingmin Zhang Junkai He Xingxiang Chen Chao Chen Zixin Deng Zhiqiang Li Shi Chen Lianrong Wang 《Nucleic acids research》2021,49(7):3672
DNA phosphorothioate (PT) modifications, with the nonbridging phosphate oxygen replaced by sulfur, governed by DndABCDE or SspABCD, are widely distributed in prokaryotes and have a highly unusual feature of occupying only a small portion of available consensus sequences in a genome. Despite the presence of plentiful non-PT-protected consensuses, DNA PT modification is still employed as a recognition tag by the restriction cognate, for example, DndFGH or SspE, to discriminate and destroy PT-lacking foreign DNA. This raises a fundamental question about how PT modifications are distributed along DNA molecules to keep the restriction components in check. Here, we present two single-molecule strategies that take advantage of the nucleophilicity of PT in combination with fluorescent markers for optical mapping of both single- and double-stranded PT modifications across individual DNA molecules. Surprisingly, PT profiles vary markedly from molecule to molecule, with different PT locations and spacing distances between PT pairs, even in the presence of DndFGH or SspE. The results revealed unprecedented PT modification features previously obscured by ensemble averaging, providing novel insights into the riddles regarding unusual target selection by PT modification and restriction components. 相似文献
9.
K. D. Jermstad D. L. Bassoni C. S. Kinlaw D. B. Neale 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,97(5-6):771-776
DNA sequences from 87 Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) cDNA RFLP probes were determined. Sequences were submitted to the GenBank dbEST database and searched for
similarity against nucleotide and protein databases using the BLASTn and BLASTx programs. Twenty-one sequences (24%) were
assigned putative functions; 18 of which were from plant species. Six sequences aligned with conifer genes, including genes
from Douglas-fir. Similarities among the 87 sequences were revealed by analyses with FASTA, suggesting either redundancy or
isoforms of the same gene. Assignment of putative functions to anonymous cDNA mapped markers will increase the understanding
of structural gene organization of the Douglas-fir genome.
Received: 10 April 1998 / Accepted: 29 April 1998 相似文献
10.
Oscar
E Torres
Montaguth Stephen
J Cross Kincaid W A Ingram Laura Lee Fiona
M Diffin Mark
D Szczelkun 《Nucleic acids research》2021,49(20):e118
Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates. 相似文献
11.
12.
Ramanathan A Huff EJ Lamers CC Potamousis KD Forrest DK Schwartz DC 《Analytical biochemistry》2004,330(2):227-241
A new approach for optically sequencing ensembles of single DNA molecules using DNA polymerase to mediate the consecutive incorporation of fluorochrome-labeled nucleotides into an array of large single DNA molecules is presented. The approach utilizes cycles of labeled fluorochrome addition, detection to count incorporations, and bleaching to reset the counter. These additions are imaged and analyzed to estimate the number of labeled additions and to correlate them on a per-locus basis along DNA backbones. Initial studies used precisely labeled polymerase chain reaction products to aid the development and validation of simple models of fluorochrome point spread functions within the imaging system. In complementary studies, nucleotides labeled with the fluorochrome R110 were incorporated into surface-elongated lambda DNA, and fluorescent signals corresponding to the addition of R110-dUTP were counted and assigned precise loci along DNA backbones. The labeled DNAs were then subjected to photobleaching and to a second cycle of addition of R110-labeled nucleotides-a second round of additions was correlated with the first to establish strings of addition histories among the ensemble of largely double-stranded templates. These results confirm the basic operational validity of this approach and point the way to the development of a practical system for optical sequencing. 相似文献
13.
We have established a method for directly sequencing cosmid DNA on an automated DNA sequencer. The major advantage of this method is that only small amounts of cosmid template DNA are needed for the sequencing reactions. 相似文献
14.
15.
O'Rourke SM Yochem J Connolly AA Price MH Carter L Lowry JB Turnbull DW Kamps-Hughes N Stiffler N Miller MR Johnson EA Bowerman B 《Genetics》2011,189(3):767-778
Forward genetic screens provide a powerful approach for inferring gene function on the basis of the phenotypes associated with mutated genes. However, determining the causal mutation by traditional mapping and candidate gene sequencing is often the rate-limiting step, especially when analyzing many mutants. We report two genomic approaches for more rapidly determining the identity of the affected genes in Caenorhabditis elegans mutants. First, we report our use of restriction site-associated DNA (RAD) polymorphism markers for rapidly mapping mutations after chemical mutagenesis and mutant isolation. Second, we describe our use of genomic interval pull-down sequencing (GIPS) to selectively capture and sequence megabase-sized portions of a mutant genome. Together, these two methods provide a rapid and cost-effective approach for positional cloning of C. elegans mutant loci, and are also applicable to other genetic model systems. 相似文献
16.
17.
18.
Condon A 《Nature reviews. Genetics》2006,7(7):565-575
Long admired for its informational role in the cell, DNA is now emerging as an ideal molecule for molecular nanotechnology. Biologists and biochemists have discovered DNA sequences and structures with new functional properties, which are able to prevent the expression of harmful genes or detect macromolecules at low concentrations. Physical and computational scientists can design rigid DNA structures that serve as scaffolds for the organization of matter at the molecular scale, and can build simple DNA-computing devices, diagnostic machines and DNA motors. The integration of biological and engineering advances offers great potential for therapeutic and diagnostic applications, and for nanoscale electronic engineering. 相似文献
19.
In the past 25 years, DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as versatile programmable templates for assembly of nanomaterials. In parallel, the functions of DNA molecules have been expanded from pure genetic information storage to catalytic functions like those of protein enzymes (DNAzymes) and specific binding functions like antibodies (aptamers). In the past few years, a new interdisciplinary field has emerged that aims to combine functional DNA biology with nanotechnology to generate more dynamic and controllable DNA-based nanostructures or DNA-templated nanomaterials that are responsive to chemical stimuli. 相似文献