首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathophysiology of episodic memory dysfunction after infarction is not completely understood. It has been suggested that infarctions located anywhere in the brain can induce widespread effects causing disruption of functional networks of the cortical regions. The default mode network, which includes the medial temporal lobe, is a functional network that is associated with episodic memory processing. We investigated whether the default mode network activity is reduced in stroke patients compared to healthy control subjects in the resting state condition. We assessed the whole brain network properties during resting state functional MRI in 21 control subjects and 20 ‘first-ever’ stroke patients. Patients were scanned 9–12 weeks after stroke onset. Stroke lesions were located in various parts of the brain. Independent component analyses were conducted to identify the default mode network and to compare the group differences of the default mode network. Furthermore, region-of-interest based analysis was performed to explore the functional connectivity between the regions of the default mode network. Stroke patients performed significantly worse than control subjects on the delayed recall score on California verbal learning test. We found decreased functional connectivity in the left medial temporal lobe, posterior cingulate and medial prefrontal cortical areas within the default mode network and reduced functional connectivity between these regions in stroke patients compared with controls. There were no significant volumetric differences between the groups. These results demonstrate that connectivity within the default mode network is reduced in ‘first-ever’ stroke patients compared to control subjects. This phenomenon might explain the occurrence of post-stroke cognitive dysfunction in stroke patients.  相似文献   

2.
功能磁共振成像(functional magnetic resonance imaging,fMRI)被用于检测静息时脑功能神经网络.作者运用静息fMRI检测海马硬化颞叶癫痫(temporal lobe epilepsy,TLE)脑"默认模式",采用感兴趣区域功能连接分析检测16例TLE患者和16名正常对照静息时脑的"默认模式",并进行组内和组间分析.研究发现,与正常对照相比,TLE静息时海马、颞极、额叶、颞叶、壳核及楔前叶等脑区与后扣带回的功能连接增强.研究结果表明TLE患者的固有脑功能组织模式有可能出现紊乱.这一研究将有助于从脑功能的角度了解癫痫患者某些临床症状的发病机理,为今后癫痫诊治的发展提供一定的帮助.  相似文献   

3.
Traditionally brain function is studied through measuring physiological responses in controlled sensory, motor, and cognitive paradigms. However, even at rest, in the absence of overt goal-directed behavior, collections of cortical regions consistently show temporally coherent activity. In humans, these resting state networks have been shown to greatly overlap with functional architectures present during consciously directed activity, which motivates the interpretation of rest activity as day dreaming, free association, stream of consciousness, and inner rehearsal. In monkeys, it has been shown though that similar coherent fluctuations are present during deep anesthesia when there is no consciousness. Here, we show that comparable resting state networks emerge from a stability analysis of the network dynamics using biologically realistic primate brain connectivity, although anatomical information alone does not identify the network. We specifically demonstrate that noise and time delays via propagation along connecting fibres are essential for the emergence of the coherent fluctuations of the default network. The spatiotemporal network dynamics evolves on multiple temporal scales and displays the intermittent neuroelectric oscillations in the fast frequency regimes, 1–100 Hz, commonly observed in electroencephalographic and magnetoencephalographic recordings, as well as the hemodynamic oscillations in the ultraslow regimes, <0.1 Hz, observed in functional magnetic resonance imaging. The combination of anatomical structure and time delays creates a space–time structure in which the neural noise enables the brain to explore various functional configurations representing its dynamic repertoire.  相似文献   

4.
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.  相似文献   

5.
Resting‐state functional magnetic resonance imaging (rs‐fMRI) has been successfully used to probe the intrinsic functional organization of the brain and to study brain development. Here, we implemented a combination of individual and group independent component analysis (ICA) of FSL on a 6‐min resting‐state data set acquired from 21 naturally sleeping term‐born (age 26 ± 6.7 d), healthy neonates to investigate the emerging functional resting‐state networks (RSNs). In line with the previous literature, we found evidence of sensorimotor, auditory/language, visual, cerebellar, thalmic, parietal, prefrontal, anterior cingulate as well as dorsal and ventral aspects of the default‐mode‐network. Additionally, we identified RSNs in frontal, parietal, and temporal regions that have not been previously described in this age group and correspond to the canonical RSNs established in adults. Importantly, we found that careful ICA‐based denoising of fMRI data increased the number of networks identified with group‐ICA, whereas the degree of spatial smoothing did not change the number of identified networks. Our results show that the infant brain has an established set of RSNs soon after birth.  相似文献   

6.
Ku SP  Tolias AS  Logothetis NK  Goense J 《Neuron》2011,70(2):352-362
The primate brain features specialized areas devoted to processing of faces, which human imaging studies?localized in the superior temporal sulcus (STS) and ventral temporal cortex. Studies in macaque monkeys, in contrast, revealed face selectivity predominantly in the STS. While this discrepancy could result from a true species difference, it may simply be the consequence of technical difficulties in obtaining high-quality MR images from the ventral temporal lobe. By using an optimized fMRI protocol we here report face-selective areas in ventral TE, the parahippocampal cortex, the entorhinal cortex, and the hippocampus of awake macaques, in addition to those already known in the STS. Notably, the face-selective activation of these memory-related areas was observed although the animals were passively viewing and it was preserved even under anesthesia. These results point to similarly extensive cortical networks for face processing in humans and monkeys and highlight potential homologs of the human fusiform face area.  相似文献   

7.
Bipolar disorder is characterized by a functional imbalance between hyperactive ventral/limbic areas and hypoactive dorsal/cognitive brain regions potentially contributing to affective and cognitive symptoms. Resting-state studies in bipolar disorder have identified abnormal functional connectivity between these brain regions. However, most of these studies used a seed-based approach, thus restricting the number of regions that were analyzed. Using data-driven approaches, researchers identified resting state networks whose spatial maps overlap with frontolimbic areas such as the default mode network, the frontoparietal networks, the salient network, and the meso/paralimbic network. These networks are specifically engaged during affective and cognitive tasks and preliminary evidence suggests that functional connectivity within and between some of these networks is impaired in bipolar disorder. The present study used independent component analysis and functional network connectivity approaches to investigate functional connectivity within and between these resting state networks in bipolar disorder. We compared 30 euthymic bipolar I disorder patients and 35 age- and gender-matched healthy controls. Inter-network connectivity analysis revealed increased functional connectivity between the meso/paralimbic and the right frontoparietal network in bipolar disorder. This abnormal connectivity pattern did not correlate with variables related to the clinical course of the disease. The present finding may reflect abnormal integration of affective and cognitive information in ventral-emotional and dorsal-cognitive networks in euthymic bipolar patients. Furthermore, the results provide novel insights into the role of the meso/paralimbic network in bipolar disorder.  相似文献   

8.
Previous research suggests overlap between brain regions that show task-induced deactivations and those activated during the performance of social-cognitive tasks. Here, we present results of quantitative meta-analyses of neuroimaging studies, which confirm a statistical convergence in the neural correlates of social and resting state cognition. Based on the idea that both social and unconstrained cognition might be characterized by introspective processes, which are also thought to be highly relevant for emotional experiences, a third meta-analysis was performed investigating studies on emotional processing. By using conjunction analyses across all three sets of studies, we can demonstrate significant overlap of task-related signal change in dorso-medial prefrontal and medial parietal cortex, brain regions that have, indeed, recently been linked to introspective abilities. Our findings, therefore, provide evidence for the existence of a core neural network, which shows task-related signal change during socio-emotional tasks and during resting states.  相似文献   

9.
How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called “the dual intertwined rings architecture”) that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or “corticotopy”). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This “dual intertwined architecture” suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi-temporal integration (i.e., relates past, present, and future representations at different temporal scales).  相似文献   

10.
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.  相似文献   

11.
Song M  Du H  Wu N  Hou B  Wu G  Wang J  Feng H  Jiang T 《PloS one》2011,6(2):e17294
Generalized tonic-clonic seizures (GTCS) are characterized by unresponsiveness and convulsions, which cause complete loss of consciousness. Many recent studies have found that the ictal alterations in brain activity of the GTCS epilepsy patients are focally involved in some brain regions, including thalamus, upper brainstem, medial prefrontal cortex, posterior midbrain regions, and lateral parietal cortex. Notably, many of these affected brain regions are the same and overlap considerably with the components of the so-called default mode network (DMN). Here, we hypothesize that the brain activity of the DMN of the GTCS epilepsy patients are different from normal controls, even in the resting state. To test this hypothesis, we compared the DMN of the GTCS epilepsy patients and the controls using the resting state functional magnetic resonance imaging. Thirteen brain areas in the DMN were extracted, and a complete undirected weighted graph was used to model the DMN for each participant. When directly comparing the edges of the graph, we found significant decreased functional connectivities within the DMN of the GTCS epilepsy patients comparing to the controls. As for the nodes of the graph, we found that the degree of some brain areas within the DMN was significantly reduced in the GTCS epilepsy patients, including the anterior medial prefrontal cortex, the bilateral superior frontal cortex, and the posterior cingulate cortex. Then we investigated into possible mechanisms of how GTCS epilepsy could cause the reduction of the functional integrations of DMN. We suggested the damaged functional integrations of the DMN in the GTCS epilepsy patients even during the resting state, which could help to understand the neural correlations of the impaired consciousness of GTCS epilepsy patients.  相似文献   

12.
The common view of Alzheimer''s disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD.  相似文献   

13.
The frontal and parietal eye fields serve as functional landmarks of the primate brain, although their correspondences between humans and macaque monkeys remain unclear. We conducted fMRI at 4.7 T in monkeys performing visually-guided saccade tasks and compared brain activations with those in humans using identical paradigms. Among multiple parietal activations, the dorsal lateral intraparietal area in monkeys and an area in the posterior superior parietal lobule in humans exhibited the highest selectivity to saccade directions. In the frontal cortex, the selectivity was highest at the junction of the precentral and superior frontal sulci in humans and in the frontal eye field (FEF) in monkeys. BOLD activation peaks were also found in premotor areas (BA6) in monkeys, which suggests that the apparent discrepancy in location between putative human FEF (BA6, suggested by imaging studies) and monkey FEF (BA8, identified by microstimulation studies) partly arose from methodological differences.  相似文献   

14.
Considerable knowledge is available on the neural substrates for speech and language from brain-imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and nonlinguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and is used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language.  相似文献   

15.
Seed-based cross-correlation analysis (sCCA) and independent component analysis have been widely employed to extract functional networks from the resting state functional magnetic resonance imaging data. However, the results of sCCA, in terms of both connectivity strength and network topology, can be sensitive to seed selection variations. ICA avoids the potential problems due to seed selection, but choosing which component(s) to represent the network of interest could be subjective and problematic. In this study, we proposed a seed-based iterative cross-correlation analysis (siCCA) method for resting state brain network analysis. The method was applied to extract default mode network (DMN) and stable task control network (STCN) in two independent datasets acquired from normal adults. Compared with the networks obtained by traditional sCCA and ICA, the resting state networks produced by siCCA were found to be highly stable and independent on seed selection. siCCA was used to analyze DMN in first-episode major depressive disorder (MDD) patients. It was found that, in the MDD patients, the volume of DMN negatively correlated with the patients'' social disability screening schedule scores.  相似文献   

16.
Exact low resolution electromagnetic tomography (eLORETA) was recorded from nineteen EEG channels in nine patients with myalgic encephalomyelitis (ME) and 9 healthy controls to assess current source density and functional connectivity, a physiological measure of similarity between pairs of distributed regions of interest, between groups. Current source density and functional connectivity were measured using eLORETA software. We found significantly decreased eLORETA source analysis oscillations in the occipital, parietal, posterior cingulate, and posterior temporal lobes in Alpha and Alpha-2. For connectivity analysis, we assessed functional connectivity within Menon triple network model of neuropathology. We found support for all three networks of the triple network model, namely the central executive network (CEN), salience network (SN), and the default mode network (DMN) indicating hypo-connectivity in the Delta, Alpha, and Alpha-2 frequency bands in patients with ME compared to controls. In addition to the current source density resting state dysfunction in the occipital, parietal, posterior temporal and posterior cingulate, the disrupted connectivity of the CEN, SN, and DMN appears to be involved in cognitive impairment for patients with ME. This research suggests that disruptions in these regions and networks could be a neurobiological feature of the disorder, representing underlying neural dysfunction.  相似文献   

17.
We investigated auditory, dorsal attention, and default mode networks in adults with tinnitus and hearing loss in a resting state functional connectivity study. Data were obtained using continuous functional magnetic resonance imaging (fMRI) while the participants were at “rest” and were not performing any task. Participants belonged to one of three groups: middle-aged adults with tinnitus and mild-to-moderate high frequency hearing loss (TIN), age-matched controls with normal hearing and no tinnitus (NH), and a second control group with mild-to-moderate high frequency hearing loss without tinnitus (HL). After standard preprocessing, (a) a group independent component analysis (ICA) using 30 components and (b) a seeding-based connectivity analysis were conducted. In the group ICA, the default mode network was the only network to display visual differences between subject groups. In the seeding analysis, we found increased connectivity between the left parahippocampus and the auditory resting state network in the TIN group when compared to NH controls. Similarly, there was also an increased correlation between the right parahippocampus and the dorsal attention network when compared to HL controls. Other group differences in this attention network included decreased correlations between the seed regions and the right supramarginal gyrus in TIN patients when compared to HL controls. In the default mode network, there was a strong decrease in correlation between the seed regions and the precuneus when compared to both control groups. The findings of this study identify specific alterations in the connectivity of the default mode, dorsal attention, and auditory resting state networks due to tinnitus. The results suggest that therapies for tinnitus that mitigate the increased connectivity of limbic regions with auditory and attention resting state networks and the decreased coherence of the default mode network could be effective at reducing tinnitus-related distress.  相似文献   

18.
The social brain in adolescence   总被引:1,自引:0,他引:1  
The term 'social brain' refers to the network of brain regions that are involved in understanding others. Behaviour that is related to social cognition changes dramatically during human adolescence. This is paralleled by functional changes that occur in the social brain during this time, in particular in the medial prefrontal cortex and the superior temporal sulcus, which show altered activity during the performance of social cognitive tasks, such as face recognition and mental-state attribution. Research also indicates that, in humans, these parts of the social brain undergo structural development, including synaptic reorganization, during adolescence. Bringing together two relatively new and rapidly expanding areas of neuroscience--social neuroscience and the study of brain development during adolescence--will increase our understanding of how the social brain develops during adolescence.  相似文献   

19.
Aberrant topological properties of small-world human brain networks in patients with schizophrenia (SZ) have been documented in previous neuroimaging studies. Aberrant functional network connectivity (FNC, temporal relationships among independent component time courses) has also been found in SZ by a previous resting state functional magnetic resonance imaging (fMRI) study. However, no study has yet determined if topological properties of FNC are also altered in SZ. In this study, small-world network metrics of FNC during the resting state were examined in both healthy controls (HCs) and SZ subjects. FMRI data were obtained from 19 HCs and 19 SZ. Brain images were decomposed into independent components (ICs) by group independent component analysis (ICA). FNC maps were constructed via a partial correlation analysis of ICA time courses. A set of undirected graphs were built by thresholding the FNC maps and the small-world network metrics of these maps were evaluated. Our results demonstrated significantly altered topological properties of FNC in SZ relative to controls. In addition, topological measures of many ICs involving frontal, parietal, occipital and cerebellar areas were altered in SZ relative to controls. Specifically, topological measures of whole network and specific components in SZ were correlated with scores on the negative symptom scale of the Positive and Negative Symptom Scale (PANSS). These findings suggest that aberrant architecture of small-world brain topology in SZ consists of ICA temporally coherent brain networks.  相似文献   

20.
The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号