首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A simple isothermal nucleic-acid amplification reaction, primer generation–rolling circle amplification (PG–RCA), was developed to detect specific nucleic-acid sequences of sample DNA. This amplification method is achievable at a constant temperature (e.g. 60°C) simply by mixing circular single-stranded DNA probe, DNA polymerase and nicking enzyme. Unlike conventional nucleic-acid amplification reactions such as polymerase chain reaction (PCR), this reaction does not require exogenous primers, which often cause primer dimerization or non-specific amplification. Instead, ‘primers’ are generated and accumulated during the reaction. The circular probe carries only two sequences: (i) a hybridization sequence to the sample DNA and (ii) a recognition sequence of the nicking enzyme. In PG–RCA, the circular probe first hybridizes with the sample DNA, and then a cascade reaction of linear rolling circle amplification and nicking reactions takes place. In contrast with conventional linear rolling circle amplification, the signal amplification is in an exponential mode since many copies of ‘primers’ are successively produced by multiple nicking reactions. Under the optimized condition, we obtained a remarkable sensitivity of 84.5 ymol (50.7 molecules) of synthetic sample DNA and 0.163 pg (~60 molecules) of genomic DNA from Listeria monocytogenes, indicating strong applicability of PG–RCA to various molecular diagnostic assays.  相似文献   

2.
Cycling probe technology (CPT), which utilizes a chimeric DNA-RNA-DNA probe and RNase H, is a rapid, isothermal probe amplification system for the detection of target DNA. Upon hybridization of the probe to its target DNA, RNase H cleaves the RNA portion of the DNA/RNA hybrid. Utilizing CPT, we designed a catalytically cleavable fluorescence probe (CataCleave probe) containing two internal fluorophores. Fluorescence intensity of the probe itself was weak due to F?rster resonance energy transfer. Cleavage of the probe by RNase H in the presence of its target DNA caused enhancement of donor fluorescence, but this was not observed with nonspecific target DNA. Further, RNase H reactions with CataCleave probe exhibit a catalytic dose-dependent response to target DNA. This confirms the capability for the direct detection of specific target DNA through a signal amplification process. Moreover, CataCleave probe is also ideal for detecting DNA amplification processes, such as polymerase chain reaction (PCR) and isothermal rolling circle amplification (RCA). In fact, we observed signal enhancement proportional to the amount of RCA product formed. We were also able to monitor real-time PCR by measuring enhancement of donor fluorescence. Hence, CataCleave probe is useful for real-time monitoring of both isothermal and temperature-cycling nucleic acid amplification methods.  相似文献   

3.
Rolling-circle amplification (RCA) and ramification amplification (RAM, also known as hyperbranched RCA) are isothermal nucleic acid amplification technologies that have gained a great application in in situ signal amplification, DNA and protein microarray assays, single nucleotide polymorphism detection, as well as clinical diagnosis. Real-time detection of RCA or RAM products has been a challenge because of most real-time detection systems, including Taqman and Molecular Beacon, are designed for thermal cycling-based DNA amplification technology. In the present study, we describe a novel fluorescent probe construct, termed molecular zipper, which is specially designed for quantifying target DNA by real-time monitoring RAM reactions. Our results showed that the molecular zipper has very low background fluorescence due to the strong interaction between two strands. Once it is incorporated into the RAM products its double strand region is opened by displacement, therefore, its fluorophore releases a fluorescent signal. Applying the molecular zipper in RAM assay, we were able to detect as few as 10 molecules within 90 min reaction. A linear relationship was observed between initial input of targets and threshold time (R2 = 0.985). These results indicate that molecular zipper can be applied to real-time monitoring and qualification of RAM reaction, implying an amenable method for automatic RAM-based diagnostic assays.  相似文献   

4.
The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37 °C, while PPL and BCL had better activities at 50 °C. The phosphate buffer was found to give a better hydrolysis yield than the Tris–HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50 °C) can be also used to accelerate hydrolysis reactions.  相似文献   

5.
Circularizable oligonucleotide probes can detect short DNA sequences with single-base resolution at the site of ligation and can be amplified by rolling circle amplification (RCA) using strand displacing polymerases. A secondary amplification scheme was developed that uses the loop-mediated amplification reaction concurrent with RCA to achieve rapid signal development from the starting circular molecules. This isothermal reaction was found to be significantly faster than the comparable hyperbranching amplification method and could detect 100 circular copies in less than 1 h.  相似文献   

6.
Wu HC  Shieh J  Wright DJ  Azarani A 《BioTechniques》2003,34(1):204-207
An automated high-throughput method that employs rolling circle amplification (RCA) to generate template for large-scale DNA sequencing has been developed using liquid handling systems equipped with precision glass syringes. A protocol was designed to perform the sequencing analysis from template preparation to thermal cycle sequencing within the same vessel, thus minimizing the amount of liquid handling and transfer. The amplified DNA was directly used for cycle sequencing with no need for any purification procedures. Total RCA reaction volumes as low as 500 nL generated sufficient templates for successful sequencing. Reducing the RCA total reaction volumes by a 40-fold factor, from a total of 20 microL to 500 nL, resulted in a significant reduction in cost, from $1.25/reaction to less than $0.04/reaction. Additionally, the volume of the sequencing reactions was reduced from a total of 20 to 10 microL, thus generating a further cost advantage. This high-throughput DNA sequencing protocol maximizes the speed and precision of processing while significantly reducing the cost of amplification.  相似文献   

7.
滚环DNA扩增的原理、应用和展望   总被引:2,自引:0,他引:2  
滚环DNA扩增 (rollingcircleDNAamplification ,RCA)是一种等温信号扩增方法 ,其线性扩增倍数为 1 0 5,指数化扩增能力大于 109,产生的扩增产物连接在固相支持物 (如玻片、微孔板等 )表面的DNA引物或抗体上。RCA是一种适合在芯片上 (on chip)进行信号扩增的新技术 ,它既能提供研究分析的敏感性和特异性 ,又能保持立体分析的多元性。RCA亦是一种痕量的分子检测方法 ,可用于极其微量的生物大分子和生物标志的检测与研究  相似文献   

8.
This paper shows energy-efficiency of microwave-accelerated esterification of free fatty acid with a heterogeneous catalyst by net microwave power measurement. In the reaction condition of 5 wt% sulfated zirconia and 1:20 M ratio of oil to methanol at 60°C and atmospheric pressure, more than 90% conversion of the esterification was achieved in 20 min by microwave heating, while it took about 130 min by conventional heating. Electric energy consumption for the microwave heating in this accelerated esterification was only 67% of estimated minimum heat energy demand because of significantly reduced reaction time.  相似文献   

9.
The application of microwave dielectric heating in a range of environment-related heterogeneous catalytic reaction systems has been reviewed. The reactions investigated include the decomposition of hydrogen sulfide, the reduction of sulfur dioxide with methane, the reformation of methane by carbon dioxide, the hydrodesulfurization of thiophene, and the oxidative coupling of methane. The interaction of microwave irradiation with heterogeneous catalytic systems and its consequence for the microwave heating behaviour of catalysts have been examined. The effect/mechanism of microwave dielectric heating on heterogeneous catalytic reaction systems has also been discussed.  相似文献   

10.
The development of isothermal amplification platforms for nucleic acid detection has the potential to increase access to molecular diagnostics in low resource settings; however, simple, low-cost methods for heating samples are required to perform reactions. In this study, we demonstrated that human body heat may be harnessed to incubate recombinase polymerase amplification (RPA) reactions for isothermal amplification of HIV-1 DNA. After measuring the temperature of mock reactions at 4 body locations, the axilla was chosen as the ideal site for comfortable, convenient incubation. Using commonly available materials, 3 methods for securing RPA reactions to the body were characterized. Finally, RPA reactions were incubated using body heat while control RPA reactions were incubated in a heat block. At room temperature, all reactions with 10 copies of HIV-1 DNA and 90% of reactions with 100 copies of HIV-1 DNA tested positive when incubated with body heat. In a cold room with an ambient temperature of 10 degrees Celsius, all reactions containing 10 copies or 100 copies of HIV-1 DNA tested positive when incubated with body heat. These results suggest that human body heat may provide an extremely low-cost solution for incubating RPA reactions in low resource settings.  相似文献   

11.
Although microwave-assisted reactions are widely applied in various domains of organic chemistry, their use in the area of enzyme chemistry has been rather limited, due to the high temperatures associated with the microwave heating: Because current technology, allows a good control of reaction parameters, several examples of microwave-assisted enzyme chemistry have been reported, using stable and effective biocatalysts (modified enzymes). The purpose of this review is to highlight the applications and studies on the influence of microwave irradiation on enzymatic properties and their application in enzyme chemistry.  相似文献   

12.
13.
Although microwave-assisted reactions are widely applied in various domains of organic chemistry, their use in the area of enzyme chemistry has been rather limited, due to the high temperatures associated with the microwave heating: Because current technology, allows a good control of reaction parameters, several examples of microwave-assisted enzyme chemistry have been reported, using stable and effective biocatalysts (modified enzymes). The purpose of this review is to highlight the applications and studies on the influence of microwave irradiation on enzymatic properties and their application in enzyme chemistry.  相似文献   

14.
15.
The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with phi29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 x 10(4)-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information.  相似文献   

16.
We have developed a method to localize DNA double strand breaks (DSBs) insitu in cultured mammalian cells. Adenoviruses encoding Saccharomyces cerevisiae HOendonuclease and its cleavage site were used to induce site-specific DSBs. Rolling circleamplification (RCA), a sensitive method that allows the detection of single molecularevent by rapid isothermal amplification, was used to localize the broken ends in situ.Punctate RCA signals were only seen in the cells that had been infected with bothadenoviruses encoding HO endonuclease and HO cleavage site, but not in the cells mockinfectedor infected with the site or endonuclease virus only. With use of a chemicalcrosslinker, in situ RCA and immunofluorescence (IF) can be performed simultaneouslyon the same sample. This methodology provides a novel approach for investigation ofDNA recombination, DNA repair, and checkpoint controls in mammalian cells.  相似文献   

17.
We describe a new approach for labeling of unique sequences within dsDNA under nondenaturing conditions. The method is based on the site-specific formation of vicinal nicks, which are created by nicking endonucleases (NEases) at specified DNA sites on the same strand within dsDNA. The oligomeric segment flanked by both nicks is then substituted, in a strand displacement reaction, by an oligonucleotide probe that becomes covalently attached to the target site upon subsequent ligation. Monitoring probe hybridization and ligation reactions by electrophoretic mobility retardation assay, we show that selected target sites can be quantitatively labeled with excellent sequence specificity. In these experiments, predominantly probes carrying a target-independent 3′ terminal sequence were employed. At target labeling, thus a branched DNA structure known as 3′-flap DNA is obtained. The single-stranded terminus in 3′-flap DNA is then utilized to prime the replication of an externally supplied ssDNA circle in a rolling circle amplification (RCA) reaction. In model experiments with samples comprised of genomic λ-DNA and human herpes virus 6 type B (HHV-6B) DNA, we have used our labeling method in combination with surface RCA as reporter system to achieve both high sequence specificity of dsDNA targeting and high sensitivity of detection. The method can find applications in sensitive and specific detection of viral duplex DNA.  相似文献   

18.
This study reevaluates the putative advantages of microwave-assisted tryptic digests compared to conventionally heated protocols performed at the same temperature. An initial investigation of enzyme stability in a temperature range of 37-80°C demonstrated that trypsin activity declines sharply at temperatures above 60°C, regardless if microwave dielectric heating or conventional heating is employed. Tryptic digests of three proteins of different size (bovine serum albumin, cytochrome c and β-casein) were thus performed at 37°C and 50°C using both microwave and conventional heating applying accurate internal fiber-optic probe reaction temperature measurements. The impact of the heating method on protein degradation and peptide fragment generation was analyzed by SDS-PAGE and MALDI-TOF-MS. Time-dependent tryptic digestion of the three proteins and subsequent analysis of the corresponding cleavage products by MALDI-TOF provided virtually identical results for both microwave and conventional heating. In addition, the impact of electromagnetic field strength on the tertiary structure of trypsin and BSA was evaluated by molecular mechanics calculations. These simulations revealed that the applied field in a typical laboratory microwave reactor is 3-4 orders of magnitude too low to induce conformational changes in proteins or enzymes.  相似文献   

19.
滚环扩增技术(RCA)是近年来发展起来的一种新型的核酸扩增技术.该技术是基于连接酶连接、引物延伸、与链置换扩增反应的一种等温核酸扩增方法.在恒温的条件下,可以产生大量的与环型探针互补的重复序列.与传统的核酸扩增方法相比,它具有扩增条件简单,特异性高,能在恒温条件下进行等特点.滚环扩增技术结合荧光、电化学、电化学发光等检...  相似文献   

20.
Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号