首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE) strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10%) by trypsin shaving, in 47 (15%) by elution at high pH, and 27 (63%) by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc) allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5), a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM), a D-alanyl-D-alanine carboxypeptidase (DdcP) and the peptidyl-prolyl cis-trans isomerase (PpiC). Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins reduced significantly the colony counts of E. faecium E155 in mice, indicating the effectiveness of these surface-related proteins as promising vaccine candidates to target different enterococcal pathogens.  相似文献   

2.
两种血吸虫病DNA疫苗的候选抗原基因研究   总被引:2,自引:0,他引:2  
目的:以日本血吸虫基因SjFABP和SjGST原核表达产物检测二价DNA疫苗pVIVO2-SjFABP-SjGST在体内诱发的特异性抗体。方法:克隆日本血吸虫抗原基因SjFABP和sjGST,构建重组原核表达载体pET30a-SjFABP、pET30a-SjGST及真核表达载体pVIVO2-SjFABP-SjGST;将pET30a-SjFABP和pET30a-sjGST进行原核表达,并将表达产物用镍亲和柱分离纯化;采用Western印迹对日本血吸虫DNA疫苗pVIVO2-SjFABP-SjGST免疫4周后的BALB/c小鼠血清进行特异性抗体检测。结果:克隆了日本血吸虫抗原基因SjFABP(399bp)和町GST(657bp),并构建了pET30a-SjFABP、pET30a-SjGST及pVIVO2-SjFABP-SjGST重组质粒;经Western印迹检测,pET30a-SjFABP及pET30a-SjGST原核表达的抗原蛋白均能够与经日本血吸虫二价DNA疫苗pVIVO2-SjFABP-SjGST免疫的小鼠的血清产生特异性免疫反应。结论:日本血吸虫町尉即和町GST基因的原核表达系统成功建立;原核表达的抗原蛋白具有免疫原性;以原核表达产物可检测日本血吸虫DNA疫苗pVIVO2-SiFABP-SiGST在体内诱发的特异性抗体。  相似文献   

3.
4.
A thorough understanding of virus diversity in wildlife provides epidemiological baseline information about pathogens. In this study, eye swab samples were obtained from semi-domesticated reindeer ( Rangifer tarandus tarandus) in Norway during an outbreak of infectious eye disease, possibly a very early stage of infectious keratoconjunctivitis (IKC). Large scale molecular virus screening, based on host nucleic acid depletion, sequence-independent amplification and next-generation sequencing of partially purified viral nucleic acid, revealed the presence of a new papillomavirus in 2 out of 8 eye swab samples and a new betaherpesvirus in 3 out of 8 eye swab samples collected from animals with clinical signs and not in similar samples in 9 animals without clinical signs. Whether either virus was responsible for causing the clinical signs or in any respect was associated to the disease condition remains to be determined.  相似文献   

5.
Mumps is a highly contagious human disease, characterized by lateral or bilateral nonsuppurative swelling of the parotid glands and neurological complications that can result in aseptic meningitis or encephalitis. A mumps vaccination program implemented since the 1960s reduced mumps incidence by more than 99% and kept the mumps case numbers as low as hundreds of cases per year in the United States before 2006. However, a large mumps outbreak occurred in vaccinated populations in 2006 and again in 2009 in the United States, raising concerns about the efficacy of the vaccination program. Previously, we have shown that clinical isolate-based recombinant mumps viruses lacking expression of either the V protein (rMuVΔV) or the SH protein (rMuVΔSH) are attenuated in a neurovirulence test using newborn rat brains (P. Xu et al., Virology 417:126–136, 2011, http://dx.doi.org/10.1016/j.virol.2011.05.003; P. Xu et al., J. Virol. 86:1768–1776, 2012, http://dx.doi.org/10.1128/JVI.06019-11) and may be good candidates for vaccine development. In this study, we examined immunity induced by rMuVΔSH and rMuVΔV in mice. Furthermore, we generated recombinant mumps viruses lacking expression of both the V protein and the SH protein (rMuVΔSHΔV). Analysis of rMuVΔSHΔV indicated that it was stable in tissue culture cell lines. Importantly, rMuVΔSHΔV was immunogenic in mice, indicating that it is a promising candidate for mumps vaccine development.  相似文献   

6.
YacG蛋白是一种能够抑制大肠杆菌促旋酶(E.coli gyrase)活性的内源性小分子蛋白质,仅由65 个氨基酸残基组成。核磁共振(NMR)研究发现,YacG结构中含有1个Cys-X2-Cys-X15-Cys-X3-Cys序列的锌指结构域,然而其作用并不清楚。本研究发现,在添加外源锌或者铁的M9基础培养基中,表达并纯化得到分别含有锌和铁的YacG蛋白,而在同时添加铁和L-半胱氨酸的M9基础培养基中可以纯化得到含有铁硫簇的蛋白质。这表明,YacG不仅是一个锌指蛋白,也是铁结合或铁硫簇结合蛋白。定点突变实验发现,YacG锌指结构中的4个半胱氨酸残基突变后,其结合的锌、铁、铁硫簇的含量都显著下降。这提示,锌结合、铁结合以及铁硫簇结合的位点均位于锌指结构域中的4个半胱氨酸残基。体内YacG过表达实验显示,用IPTG在大肠杆菌体内诱导表达野生型YacG蛋白会导致其生长明显受到抑制,而过表达突变体蛋白(YacG-C12/28S)对其生长的抑制作用将会减弱。体外实验进一步发现,锌结合、铁结合以及铁硫簇结合形式的YacG蛋白对E.coli gyrase促DNA螺旋活性的抑制作用没有明显差别,但是锌指结构突变体蛋白(YacG-C12/28S)对gyrase活性的抑制作用显著减弱。这说明,完整的锌指结构对YacG抑制gyrase活性的功能具有重要作用。此研究有可能为gyrase抑制剂类抗生素药物的研发提供有用的线索。  相似文献   

7.
Abstract: Two fatty acid binding proteins (FABPs) were isolated from Swiss Webster mouse brains. Neither protein cross-reacted with antisera to recombinant liver L-FABP. One protein, designated brain H-FABP, migrated on tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a single band at 14.5 kDa with pl 4.9. Brain H-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.02 and 0.5 µ M , respectively. Brain H-FABP cross-reacted with affinity-purified antisera to recombinant heart H-FABP. The second protein, mouse brain B-FABP, migrated on tricine SDS-PAGE gels as a doublet at 16.0 and 15.5 kDa with pl values of 4.5 and 4.7, respectively. Brain B-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.01 and 0.7 µ M , respectively. The brain B-FABP doublet was immunoreactive with affinity-purified antibodies against recombinant mouse brain B-FABP, but not with affinity-purified antibodies against heart H-FABP. [3H]Oleate competition binding indicated that the two brain FABPs had distinct ligand binding specificities. Both bound fatty acids, fatty acyl CoA, and lysophosphatidic acid. Although both preferentially bound unsaturated fatty acids, twofold differences in specific saturated fatty acid binding were observed. Brain B-FABP and brain H-FABP represented 0.1 and 0.01% of brain total cytosolic protein, respectively. In summary, mouse brain contains two native fatty acid binding proteins, brain H-FABP and brain B-FABP.  相似文献   

8.

Background

Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and an emerging infectious disease in the US and Europe. We have shown TcG1, TcG2, and TcG4 antigens elicit protective immunity to T. cruzi in mice and dogs. Herein, we investigated antigenicity of the recombinant proteins in humans to determine their potential utility for the development of next generation diagnostics for screening of T. cruzi infection and Chagas disease.

Methods and Results

Sera samples from inhabitants of the endemic areas of Argentina-Bolivia and Mexico-Guatemala were analyzed in 1st-phase for anti-T. cruzi antibody response by traditional serology tests; and in 2nd-phase for antibody response to the recombinant antigens (individually or mixed) by an ELISA. We noted similar antibody response to candidate antigens in sera samples from inhabitants of Argentina and Mexico (n = 175). The IgG antibodies to TcG1, TcG2, and TcG4 (individually) and TcGmix were present in 62–71%, 65–78% and 72–82%, and 89–93% of the subjects, respectively, identified to be seropositive by traditional serology. Recombinant TcG1- (93.6%), TcG2- (96%), TcG4- (94.6%) and TcGmix- (98%) based ELISA exhibited significantly higher specificity compared to that noted for T. cruzi trypomastigote-based ELISA (77.8%) in diagnosing T. cruzi-infection and avoiding cross-reactivity to Leishmania spp. No significant correlation was noted in the sera levels of antibody response and clinical severity of Chagas disease in seropositive subjects.

Conclusions

Three candidate antigens were recognized by antibody response in chagasic patients from two distinct study sites and expressed in diverse strains of the circulating parasites. A multiplex ELISA detecting antibody response to three antigens was highly sensitive and specific in diagnosing T. cruzi infection in humans, suggesting that a diagnostic kit based on TcG1, TcG2 and TcG4 recombinant proteins will be useful in diverse situations.  相似文献   

9.
10.
Acinetobacter baumannii is an emerging opportunistic bacterium associated with nosocomial infections in intensive care units. The alarming increase in infections caused by A. baumannii is strongly associated with enhanced resistance to antibiotics, in particular carbapenems. This, together with the lack of a licensed vaccine, has translated into significant economic, logistic and health impacts to health care facilities. In this study, we combined reverse vaccinology and proteomics to identify surface-exposed and secreted antigens from A. baumannii. Using in silico prediction tools and comparative genome analysis in combination with in vitro proteomic approaches, we identified 42 antigens that could be used as potential vaccine targets. Considering the paucity of effective antibiotics available to treat multidrug-resistant A. baumannii infections, these vaccine targets may serve as a framework for the development of a broadly protective multi-component vaccine, an outcome that would have a major impact on the burden of A. baumannii infections in intensive care units across the globe.  相似文献   

11.
Infection from Campylobacter jejuni causes intense enteritis with diarrhea, fever and abdominal pain. The peptide-based vaccine could be the best way  相似文献   

12.
Noroviruses (NoVs) are the most important viral pathogens that cause epidemic acute gastroenteritis. NoVs recognize human histo-blood group antigens (HBGAs) as receptors or attachment factors. The elucidation of crystal structures of the HBGA-binding interfaces of a number of human NoVs representing different HBGA binding patterns opens a new strategy for the development of antiviral compounds against NoVs through rational drug design and computer-aided virtual screening methods. In this study, docking simulations and virtual screening were used to identify hit compounds targeting the A and B antigens binding sites on the surface of the capsid P protein of a GII.4 NoV (VA387). Following validation by re-docking of the A and B ligands, these structural models and AutoDock suite of programs were used to screen a large drug-like compound library (derived from ZINC library) for inhibitors blocking GII.4 binding to HBGAs. After screening >2 million compounds using multistage protocol, 160 hit compounds with best predicted binding affinities and representing a number of distinct chemical classes have been selected for subsequent experimental validation. Twenty of the 160 compounds were found to be able to block the VA387 P dimers binding to the A and/or B HBGAs at an IC50<40.0 µM, with top 5 compounds blocking the HBGA binding at an IC50<10.0 µM in both oligosaccharide- and saliva-based blocking assays. Interestingly, 4 of the top-5 compounds shared the basic structure of cyclopenta [a] dimethyl phenanthren, indicating a promising structural template for further improvement by rational design.  相似文献   

13.
Opioid receptors have been characterized in Drosophila neural tissue. [3H]Etorphine (universal opioid ligand) bound stereospecifically, saturably, and with high affinity (KD = 8.8 +/- 1.7 nM; Bmax = 2.3 +/- 0.2 pmol/mg of protein) to Drosophila head membranes. Binding analyses with more specific ligands showed the presence of two distinct opioid sites in this tissue. One site was labeled by [3H]dihydromorphine ([3H]DHM), a mu-selective ligand: KD = 150 +/- 34 nM; Bmax = 3.0 +/- 0.6 pmol/mg of protein. Trypsin or heat treatment (100 degrees C for 15 min) of the Drosophila extract reduced specific [3H]DHM binding by greater than 80%. The rank order of potency of drugs at this site was levorphanol greater than DHM greater than normorphine greater than naloxone much greater than dextrorphan; the mu-specific peptide [D-Ala2,Gly-ol5]-enkephalin and delta-, kappa-, and sigma-ligands were inactive at this site. The other site was labeled by (-)-[3H]ethylketocyclazocine ((-)-[3H]EKC), a kappa-opioid, which bound stereospecifically, saturably, and with relatively high affinity to an apparent single class of receptors (KD = 212 +/- 25 nM; Bmax = 1.9 +/- 0.2 pmol/mg of protein). (-)-[3H]EKC binding could be displaced by kappa-opioids but not by mu-, delta-, or sigma-opioids or by the kappa-peptide dynorphin. Specific binding constituted approximately 70% of total binding at 1 nM and approximately 50% at 800 nM for all three radioligands ([3H]etorphine, [3H]EKC, and [3H]DHM). Specific binding of the delta-ligands [3H][D-Ala2,D-Leu5]-enkephalin and [3H][D-Pen2,D-Pen5]-enkephalin was undetectable in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The incidence of multidrug-resistant Enterococcus faecium hospital infections has been steadily increasing. With the goal of discovering new vaccine antigens, we systematically fractionated and purified four distinct surface carbohydrates from E. faecium endocarditis isolate Tx16, shown previously to be resistant to phagocytosis in the presence of human serum. The two most abundant polysaccharides consist of novel branched heteroglycan repeating units that include signature sugars altruronic acid and legionaminic acid, respectively. A minor high molecular weight polysaccharide component was recognized as the fructose homopolymer levan, and a glucosylated lipoteichoic acid (LTA) was identified in a micellar fraction. The polysaccharides were conjugated to the CRM197 carrier protein, and the resulting glycoconjugates were used to immunize rabbits. Rabbit immune sera were evaluated for their ability to kill Tx16 in opsonophagocytic assays and in a mouse passive protection infection model. Although antibodies raised against levan failed to mediate opsonophagocytic killing, the other glycoconjugates induced effective opsonic antibodies, with the altruronic acid-containing polysaccharide antisera showing the greatest opsonophagocytic assay activity. Antibodies directed against either novel heteroglycan or the LTA reduced bacterial load in mouse liver or kidney tissue. To assess antigen prevalence, we screened a diverse collection of blood isolates (n = 101) with antibodies to the polysaccharides. LTA was detected on the surface of 80% of the strains, and antigens recognized by antibodies to the two major heteroglycans were co-expressed on 63% of these clinical isolates. Collectively, these results represent the first steps toward identifying components of a glycoconjugate vaccine to prevent E. faecium infection.  相似文献   

15.
We have identified and purified two RNA binding factors from pea nuclear extracts. One factor (RBF-1) consisted of at least two polypeptides with molecular weights of approximately 27 and 59 kD; each of these polypeptides could be crosslinked to labelled RNA by ultraviolet light. The other factor (RBF-2) also consisted of two polypeptides (of approximately 93 and 126 kO in size) that could be crosslinked to RNA by UV. Both factors showed general preferences for single stranded RNA. However, RBF-1 displayed a preference for poly(A) and poly(U) over poly(G) or poly(C), while RBF-2 had a strong preference for poly(U) over the other three homo polymers. These properties are suggestive of possible roles for these factors in RNA metabolism in plant nuclei.  相似文献   

16.
Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP) and the Duffy Antigen Receptor for Chemokines (DARC) and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s) lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.  相似文献   

17.
18.
A collection of 57 enterococcal isolates from different origin (including river, treatment plant, spring and garbage water, soil, animal, and vegetables from Aydın) was screened for the production of bacteriocins. Enterococci were identified at species levels as Enterococcus faecium (34), E. hirae (6), E. casseliflavus (4), E. durans (4), E. faecalis (4), E. mundtii (3) and E. avium (2). Of the 57 isolates 40 of them inhibited the growth of at least one indicator bacterium. Based on our PCR results 54 strains possesed enterocin genes. The genes of entA and entB were the most frequently detected structural genes among the PCR positive strains (54 and 53 strains, respectively) and the entB gene was always associated with entA gene. The highest combination of enterocin genes (24 of 54 strains) detected was entA, entB, entP and entL50A/B. The enterocins AS-48 and CylLLS genes were not found. Three enterococcal isolates, 2 E. faecium and 1 E. hirae were not harbour any of tested enterocin genes. No correlation between the presence of enterocin structural genes and the origin of the strain was detected, also no relationship seemed to exist between the tested enterocin genes and the activity spectra of isolates. Genes encoding bacteriocins are widely disseminated among enterocci from different origin and more studies should be done for evaluate industrial potential of bacteriocins.  相似文献   

19.
Insect lectins are important as part of nonspecific self-defense, but their antifungal mechanisms remain to be elucidated. Fungi contain glucans on the cell surface and insect glucan-binding proteins are considered to be essential for antifungal mechanisms. We purified glucose-binding proteins from hemolymph of pupae of the silkworm Bombyx mori, and the amino acid sequence analysis showed that their two proteins are 30-kDa lipoproteins, major components of B. mori hemolymph. These lipoproteins specifically bound to glucose and glucans, suggesting that they are involved in insect self-defense systems.  相似文献   

20.
Yu S  Wang Q  Zhang J  Wu Q  Guo Z 《MedChemComm》2011,2(6):524-530
GM3, a sialylated trisaccharide antigen expressed by a number of tumors, is an attractive target in the design of therapeutic cancer vaccines. However, a serious problem associated with GM3 is that it is poorly immunogenic. To overcome this problem for the development of GM3-based cancer vaccines, four GM3 derivatives, including 5'-N-p-methylphenylacetyl, 5'-N-p-methoxyphenylacetyl, 5'-N-p-acetophenylacetyl and 5'-N-p-chlorophenylacetyl GM3, were synthesized and then coupled to a carrier protein, keyhole limpet haemocyanin (KLH). The resultant glycoconjugates were evaluated as vaccines in mouse and compared to the KLH conjugate of 5'-N-phenylacetyl GM3 (GM3NPhAc), a highly immunogenic GM3 derivative that was previously investigated as a vaccine candidate. All of the four new GM3 derivatives were proved to be more immunogenic than GM3NPhAc and elicit very strong T cell-dependent immune responses desirable for cancer immunotherapy. It was concluded that the new GM3 derivatives can form promising vaccine candidates that may be used to combine with cell glycoengineering for cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号