首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals and the elderly exhibit the highest risk for the development of severe RSV-induced disease. Murine studies demonstrate that CD8 T cells mediate RSV clearance from the lungs. Murine studies also indicate that the host immune response contributes to RSV-induced morbidity as T-cell depletion prevents the development of disease despite sustained viral replication. Dendritic cells (DCs) play a central role in the induction of the RSV-specific adaptive immune response. Following RSV infection, lung-resident DCs acquire viral antigens, migrate to the lung-draining lymph nodes and initiate the T-cell response. This article focuses on data generated from both in vitro DC infection studies and RSV mouse models that together have advanced our understanding of how RSV infection modulates DC function and the subsequent impact on the adaptive immune response.  相似文献   

3.
Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection. [BMB Reports 2014; 47(4): 184-191]  相似文献   

4.
The respiratory syncytial virus (RSV) causes potentially fatal lower respiratory tract infection in infants. The molecular mechanism of RSV infection is unknown. Our data show that RSV colocalizes with intercellular adhesion molecule-1 (ICAM-1) on the HEp-2 epithelial cell surface. Furthermore, a neutralizing anti-ICAM-1 mAb significantly inhibits RSV infection and infection-induced secretion of proinflammatory chemokine RANTES and mediator ET-1 in HEp-2 cells. Similar decrease in RSV infection is also observed in A549, a type-2 alveolar epithelial cell line, and NHBE, the normal human bronchial epithelial cell line when pretreated with anti-ICAM-1 mAb prior to RSV infection. Incubation of virus with soluble ICAM-1 also significantly decreases RSV infection of epithelial cells. Binding studies using ELISA indicate that RSV binds to ICAM-1, which can be inhibited by an antibody to the fusion F protein and also the recombinant F protein can bind to soluble ICAM-1, suggesting that RSV interaction with ICAM-1 involves the F protein. It is thus concluded that ICAM-1 facilitates RSV entry and infection of human epithelial cells by binding to its F protein, which is important to viral replication and infection and may lend itself as a therapeutic target.  相似文献   

5.
Multiple factors, including cardiopulmonary anatomy, direct viral effects and the immune response can affect the severity of lower respiratory tract disease caused by respiratory syncytial virus (RSV). RSV is the most frequent viral respiratory cause of hospitalization in infants and young children in the world. In this review, we discuss the mechanisms of illness associated with severe RSV lower respiratory tract disease. A better understanding of the factors affecting the course of illness and their interplay should allow development of effective therapies in the future.  相似文献   

6.
In epidemiological studies of respiratory syncytial virus (RSV) disease, breast milk has proven to be beneficial. However, a host mechanism that is associated with both disease severity and that is capable of being modulated by breast milk, has not yet been identified. Both the predominance of interleukin-10 (IL-10) over interferon-gamma (IFN-gamma), and high soluble interleukin-2 receptor antagonist (sCD25) concentrations have been associated with RSV severity. We explored if they were modulated by breastfeeding. Previously healthy Chilean infants from Santiago with RSV infection (n = 349) were consecutively enrolled in the study if they were term births, without underlying pathology. Breastfeeding was described as absent or present, and if partial or exclusive. Immune response was expressed through plasma concentrations of IFN-gamma, IL-10 and sCD25, obtained both in the acute and the recovery phase. The acute phase sCD25 concentrations were lower in the breastfed (13.8 ng/mL, n =133), compared with the non-breastfed infants (15.9 ng/mL, n 27, p = 0.015). The difference increased in infants below 3 months of age (p = 0.006) and with exclusive (p = 0.004), compared to partial breastfeeding (p = 0.025). When analyzed together with age, sex, severity and environment, breastfeeding was the only independent predictor of high sCD25 concentrations (above mean + 1SD, OR 4.6, 95% CI 1.8-11.9, p = 0.0015). The recovery phase IFN-gamma/IL-10 ratio was higher in the breastfed infants, but when analyzed with potential confounding factors, only female sex was associated with an increased ratio (OR 2.32, 95% CI 1.02-5.29, p = 0.045). High sCD25 concentrations during the acute phase of infection, previously associated with severe RSV disease, were significantly and independently reduced in association with breastfeeding, whereas the Th1/Th3 balance was only modified in the recovery phase.  相似文献   

7.
The relationship of suppressor cell numbers and function to virus-specific IgE response was determined in 72 infants with respiratory syncytial virus (RSV) infection. Monoclonal antibodies to membrane antigens were used to enumerate OKT4 and OKT8 antigen-positive cells, and suppressor cell function as quantitated by the degree of suppression of lymphocyte mitogenesis induced by incubation of lymphocyte cultures with histamine. Patients with bronchiolitis had fewer OKT8-positive cells during convalescence than patients with other forms of illness due to RSV (p less than 0.05). An inverse correlation of OKT8-positive cell numbers and peak IgE titers was observed (p less than 0.01). Histamine-induced suppression was also reduced in patients with bronchiolitis (p less than 0.05). In patients with repeated infection, improved histamine-induced suppression was associated with reduced virus-specific IgE titers and the absence of wheezing. Defects in immunoregulation may underlie previously recognized immunologic and pharmacologic abnormalities in patients with bronchiolitis.  相似文献   

8.

Background

Severe respiratory syncytial virus infection (RSV) during infancy has been shown to be a major risk factor for the development of subsequent wheeze. However, the reasons for this link remain unclear. The objective of this research was to determine the consequences of early exposure to RSV and allergen in the development of subsequent airway hyperreactivity (AHR) using a developmental time point in the mouse that parallels that of the human neonate.

Methods

Weanling mice were sensitized and challenged with ovalbumin (Ova) and/or infected with RSV. Eight days after the last allergen challenge, various pathophysiological endpoints were examined.

Results

AHR in response to methacholine was enhanced only in weanling mice exposed to Ova and subsequently infected with RSV. The increase in AHR appeared to be unrelated to pulmonary RSV titer. Total bronchoalveolar lavage cellularity in these mice increased approximately two-fold relative to Ova alone and was attributable to increases in eosinophil and lymphocyte numbers. Enhanced pulmonary pathologies including persistent mucus production and subepithelial fibrosis were observed. Interestingly, these data correlated with transient increases in TNF-α, IFN-γ, IL-5, and IL-2.

Conclusion

The observed changes in pulmonary structure may provide an explanation for epidemiological data suggesting that early exposure to allergens and RSV have long-term physiological consequences. Furthermore, the data presented here highlight the importance of preventative strategies against RSV infection of atopic individuals during neonatal development.  相似文献   

9.
Groups of BALB/c mice were sham infected or inoculated intranasally (IN) with live RSV. From Day 4 to 8 after infection, the animals were exposed IN to ovalbumin (OVA) with or without alum adjuvant. At different intervals, levels of OVA concentration in serum, IgG-anti-OVA antibody activity in serum, and IgA-anti-OVA antibody activity in bronchial washings were determined, employing the ELISA technique. IgE-anti-OVA antibody titers in serum and bronchial washings were assessed by PCA. OVA concentrations in serum were significantly higher in RSV-infected animals compared to uninfected controls. The use of alum adjuvant also increased OVA uptake in uninfected animals but to a lesser extent than RSV infection. RSV-infected animals developed significantly higher OVA-specific antibody titers of IgG isotype in serum and IgA isotype in bronchial washings than the uninfected controls, while alum enhanced the immune response less markedly but still significantly in uninfected mice. An IgE antibody response to OVA in serum was demonstrable in 50% of RSV-infected mice immunized IN with OVA and alum, while all uninfected animals and RSV-infected animals immunized with OVA alone (without adjuvant) failed to develop a detectable IgE response. These findings suggest that infections with viral agents such as RSV may function as adjuvants for other antigens inhaled during acute respiratory infection. These observations may explain the alterations in the immune response to other antigens in patients with acute viral-induced bronchopulmonary diseases.  相似文献   

10.
The purified respiratory syncytial virus (RSV), Randall strain contained 10 polypeptides (72,000 molecular weight [72K], 66K, 48K, 42K, 40K, 36K, 30K, 23K, 18K, and 15K), 8 of which proved to be virus specific, and polypeptides 48K and 23K were glycosylated. In addition, a high-molecular-weight (150K), virus-specific glycopolypeptide was immunoprecipitated from RSV-infected cell lysate. The antibody response in human sera serially collected from children with primary RSV infection was mainly directed against the polypeptides 30K, 48K, and 72K. The immune response against the other viral proteins was also already detectable in the acute-phase sera. These results indicate that the immune response in RSV infection differs significantly from those for other diseases caused by paramyxoviruses.  相似文献   

11.
Respiratory syncytial virus (RSV) causes severe respiratory disease in both the very young and the elderly. Nearly all individuals become infected in early childhood, and reinfections with the virus are common throughout life. Despite its clinical impact, there remains no licensed RSV vaccine. RSV infection in the respiratory tract induces an inflammatory response by the host to facilitate efficient clearance of the virus. However, the host immune response also contributes to the respiratory disease observed following an RSV infection. RSV has evolved several mechanisms to evade the host immune response and promote virus replication through interactions between RSV proteins and immune components. In contrast, some RSV proteins also play critical roles in activating, rather than suppressing, host immunity. In this review, we discuss the interactions between individual RSV proteins and host factors that modulate the immune response and the implications of these interactions for the course of an RSV infection.  相似文献   

12.
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in infants and children. To study RSV replication, we have developed an in vitro model of human nasopharyngeal mucosa, human airway epithelium (HAE). RSV grows to moderate titers in HAE, though they are significantly lower than those in a continuous epithelial cell line, HEp-2. In HAE, RSV spreads over time to form focal collections of infected cells causing minimal cytopathic effect. Unlike HEp-2 cells, in which wild-type and live-attenuated vaccine candidate viruses grow equally well, the vaccine candidates exhibit growth in HAE that parallels their level of attenuation in children.  相似文献   

13.
The mechanisms by which respiratory syncytial virus (RSV) infection causes airway hyperresponsiveness (AHR) are not fully established. We hypothesized that RSV infection may alter the expression of airway sensory neuropeptides, thereby contributing to the development of altered airway function. BALB/c mice were infected with RSV followed by assessment of airway function, inflammation, and sensory neuropeptide expression. After RSV infection, mice developed significant airway inflammation associated with increased airway resistance to inhaled methacholine and increased tracheal smooth muscle responsiveness to electrical field stimulation. In these animals, substance P expression was markedly increased, whereas calcitonin gene-related peptide (CGRP) expression was decreased in airway tissue. Prophylactic treatment with Sendide, a highly selective antagonist of the neurokinin-1 receptor, or CGRP, but not the CGRP antagonist CGRP(8-37), inhibited the development of airway inflammation and AHR in RSV-infected animals. Therapeutic treatment with CGRP, but not CGRP(8-37) or Sendide, abolished AHR in RSV-infected animals despite increased substance P levels and previously established airway inflammation. These data suggest that RSV-induced airway dysfunction is, at least in part, due to an imbalance in sensory neuropeptide expression in the airways. Restoration of this balance may be beneficial for the treatment of RSV-mediated airway dysfunction.  相似文献   

14.
Respiratory syncytial virus (RSV) infection is the major cause of severe bronchiolitis in infants. Pathology of this infection is partly due to excessive proinflammatory leukocyte influx mediated by chemokines. Although direct infection of the respiratory epithelium by RSV may induce chemokine secretion, little is known about the role of cytokine networks. We investigated the effects of conditioned medium (CM) from RSV-infected monocytes (RSV-CM) on respiratory epithelial (A549) cell chemokine release. RSV-CM, but not control CM (both at a 1:5 dilution), stimulated interleukin-8 (IL-8) secretion from A549 cells within 2 h, and secretion increased over 72 h to 11,360 +/- 1,090 pg/ml without affecting cell viability. In contrast, RSV-CM had only a small effect on RANTES secretion. RSV-CM interacted with direct RSV infection to synergistically amplify IL-8 secretion from respiratory epithelial cells (levels of secretion at 48 h were as follows: RSV-CM alone, 8,140 +/- 2,160 pg/ml; RSV alone, 12,170 +/- 300 pg/ml; RSV-CM plus RSV, 27,040 +/- 5,260 pg/ml; P < 0.05). RSV-CM induced degradation of IkappaBalpha within 5 min but did not affect IkappaBbeta. RSV-CM activated transient nuclear binding of NF-kappaB within 1 h, while activation of NF-IL6 was delayed until 8 h and was still detectable at 24 h. Promoter-reporter analysis demonstrated that NF-kappaB binding was essential and that NF-IL6 was important for IL-8 promoter activity in RSV-CM-activated cells. Blocking experiments revealed that the effects of RSV-CM depended on monocyte-derived IL-1 but that tumor necrosis factor alpha was not involved in this network. In summary, RSV infection of monocytes results in and amplifies direct RSV-mediated IL-8 secretion from respiratory epithelial cells by an NF-kappaB-dependent, NF-IL6-requiring mechanism.  相似文献   

15.
Respiratory syncytial virus (RSV) is the most common cause of severe lower respiratory tract infection in infants and the elderly. There is currently no effective antiviral treatment for the infection, but advances in our understanding of RSV uptake, especially the role of surfactant proteins, the attachment protein G and the fusion protein F, as well as the post-binding events, have revealed potential targets for new therapies and vaccine development. RSV infection triggers an intense inflammatory response, mediated initially by the infected airway epithelial cells and antigen-presenting cells. Humoral and cell-mediated immune responses are important in controlling the extent of infection and promoting viral clearance. The initial innate immune response may play a critical role by influencing the subsequent adaptive response generated. This review summarizes our current understanding of RSV binding and uptake in mammalian cells and how these initial interactions influence the subsequent innate immune response generated.  相似文献   

16.
Respiratory Syncytial Virus is a frequent cause of severe bronchiolitis in children. To improve our understanding of systemic host responses to RSV, we compared BALB/c mouse gene expression responses at day 1, 2, and 5 during primary RSV infection in lung, bronchial lymph nodes, and blood. We identified a set of 53 interferon-associated and innate immunity genes that give correlated responses in all three murine tissues. Additionally, we identified blood gene signatures that are indicative of acute infection, secondary immune response, and vaccine-enhanced disease, respectively. Eosinophil-associated ribonucleases were characteristic for the vaccine-enhanced disease blood signature. These results indicate that it may be possible to distinguish protective and unfavorable patient lung responses via blood diagnostics.  相似文献   

17.
Li F  Zhu H  Sun R  Wei H  Tian Z 《Journal of virology》2012,86(4):2251-2258
It is known that respiratory syncytial virus (RSV) is the main cause of bronchiolitis and pneumonia in young children. RSV infection often leads to severe acute lung immunopathology, but the underlying immune mechanisms are not yet fully elucidated. Here, we found that RSV infection induced severe acute lung immune injury and promoted the accumulation and activation of lung natural killer (NK) cells at the early stage of infection in BALB/c mice. Activated lung NK cells highly expressed activating receptors NKG2D and CD27 and became functional NK cells by producing a large amount of gamma interferon (IFN-γ), which was responsible for acute lung immune injury. NK cell depletion significantly attenuated lung immune injury and reduced infiltration of total inflammatory cells and production of IFN-γ in bronchoalveolar lavage fluid (BALF). These data show that NK cells are involved in exacerbating the lung immune injury at the early stage of RSV infection via IFN-γ secretion.  相似文献   

18.
Influenza A viruses (IAV) have been the cause of several influenza pandemics in history and are a significant threat for the next global pandemic. Hospitalized influenza patients often have excess interferon production and a dysregulated immune response to the IAV infection. Obtaining a better understanding of the mechanisms of IAV infection that induce these harmful effects would help drug developers and health professionals create more effective treatments for IAV infection and improve patient outcomes. IAV stimulates viral sensors and receptors expressed by alveolar epithelial cells, like RIG-I and toll-like receptor 3 (TLR3). These two pathways coordinate with one another to induce expression of type III interferons to combat the infection. Presented here is a queuing theory-based model of these pathways that was designed to analyze the timing and amount of interferons produced in response to IAV single stranded RNA and double-stranded RNA detection. The model accurately represents biological data showing the necessary coordination of the RIG-I and TLR3 pathways for effective interferon production. This model can serve as the framework for future studies of IAV infection and identify new targets for potential treatments.  相似文献   

19.
Plasmacytoid dendritic cells (pDC), as major producers of IFN-alpha, are thought not only to be pivotal in antiviral immunity, but also to limit allergic inflammation. In this study, we delineate the role of pDC in a mouse model of respiratory syncytial virus (RSV)-induced airway inflammation. Bone marrow-derived pDC generated high levels of IFN-alpha upon RSV infection, and the percentage of pDC expressing MHC class II and maturation-associated costimulatory molecules was increased. However, their weak Ag-presenting capacity was not enhanced. Furthermore, pDC induced marked levels of IL-10 in T cell cultures irrespective of infection. In vivo, numbers of pDC in the lung increased early after RSV infection and remained elevated throughout the inflammatory phase and the resolution phase of infection. Depletion of pDC resulted in increases in peak RSV titers, pulmonary inflammation, and airway hyperresponsiveness. In contrast, adoptive transfer of activated pDC to the airways reduced RSV copy numbers. In conclusion, RSV infection induces activation of murine pDC with robust IFN-alpha production, limiting replication and accelerating elimination of RSV. In addition to this innate response, pDC also may play an immune regulatory role in reducing pulmonary inflammation and inhibiting the development of airway hyperresponsiveness.  相似文献   

20.
3-nitrotyrosine (NO2Tyr), an L-tyrosine derivative during nitrative stress, can substitute the COOH-terminal tyrosine of alpha-tubulin, posttranslationally altering microtubular functions. Because infection of the cells by respiratory syncytial virus (RSV) may require intact microtubules, we tested the hypothesis that NO2Tyr would inhibit RSV infection and intracellular signaling via nitrotyrosination of alpha-tubulin. A human bronchial epithelial cell line (BEAS-2B) was incubated with RSV with or without NO2Tyr. The release of chemokines and viral particles and activation of interferon regulatory factor-3 (IRF-3) were measured. Incubation with NO2Tyr increased nitrotyrosinated alpha-tubulin, and NO2Tyr colocalized with microtubules. RSV-infected cells released viral particles, RANTES, and IL-8 in a time- and dose-dependent manner, and intracellular RSV proteins coprecipitated with alpha-tubulin. NO2Tyr attenuated the RSV-induced release of RANTES, IL-8, and viral particles by 50-90% and decreased alpha-tubulin-associated RSV proteins. 3-chlorotyrosine, another L-tyrosine derivative, had no effects. NO2Tyr also inhibited the RSV-induced shift of the unphosphorylated form I of IRF-3 to the phosphorylated form II. Pre-exposure of the cells to NO(2) (0.15 ppm, 4 h), which produced diffuse protein tyrosine nitration, did not affect RSV-induced release of RANTES, IL-8, or viral particles. NO2Tyr did not affect the potential of viral spreading to the neighboring cells since the RSV titers were not decreased when the uninfected cells were cocultured with the preinfected cells in NO2Tyr-containing medium. These results indicate that NO2Tyr, by replacing the COOH-terminal tyrosine of alpha-tubulin, attenuated RSV infection, and the inhibition appeared to occur at the early stages of RSV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号