首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Current methods for genomic mapping of 5-hydroxymethylcytosine (5hmC) have been limited by either costly sequencing depth, high DNA input, or lack of single-base resolution. We present an approach called Reduced Representation 5-Hydroxymethylcytosine Profiling (RRHP) to map 5hmC sites at single-base resolution by exploiting the use of beta-glucosyltransferase to inhibit enzymatic digestion at the junction where adapters are ligated to a genomic library. Therefore, only library fragments presenting glucosylated 5hmC residues at the junction are sequenced. RRHP can detect sites with low 5hmC abundance, and when combined with RRBS data, 5-methylcytosine and 5-hydroxymethylcytosine can be compared at a specific site.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0456-5) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Differences in 5-hydroxymethylcytosine, 5hmC, distributions may complicate previous observations of abnormal cytosine methylation statuses that are used for the identification of new tumor suppressor gene candidates that are relevant to human hepatocarcinogenesis. The simultaneous detection of 5-methylcytosine and 5-hydroxymethylcytosine is likely to stimulate the discovery of aberrantly methylated genes with increased accuracy in human hepatocellular carcinoma.

Results

Here, we performed ultra-performance liquid chromatography/tandem mass spectrometry and single-base high-throughput sequencing, Hydroxymethylation and Methylation Sensitive Tag sequencing, HMST-seq, to synchronously measure these two modifications in human hepatocellular carcinoma samples. After identification of differentially methylated and hydroxymethylated genes in human hepatocellular carcinoma, we integrate DNA copy-number alterations, as determined using array-based comparative genomic hybridization data, with gene expression to identify genes that are potentially silenced by promoter hypermethylation.

Conclusions

We report a high enrichment of genes with epigenetic aberrations in cancer signaling pathways. Six genes were selected as tumor suppressor gene candidates, among which, ECM1, ATF5 and EOMES are confirmed via siRNA experiments to have potential anti-cancer functions.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0533-9) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Chromosomal breakage followed by faulty DNA repair leads to gene amplifications and deletions in cancers. However, the mere assessment of the extent of genomic changes, amplifications and deletions may reduce the complexity of genomic data observed by array comparative genomic hybridization (array CGH). We present here a novel approach to array CGH data analysis, which focuses on putative breakpoints responsible for rearrangements within the genome.

Results

We performed array comparative genomic hybridization in 29 primary tumors from high risk patients with breast cancer. The specimens were flow sorted according to ploidy to increase tumor cell purity prior to array CGH. We describe the number of chromosomal breaks as well as the patterns of breaks on individual chromosomes in each tumor. There were differences in chromosomal breakage patterns between the 3 clinical subtypes of breast cancers, although the highest density of breaks occurred at chromosome 17 in all subtypes, suggesting a particular proclivity of this chromosome for breaks. We also observed chromothripsis affecting various chromosomes in 41% of high risk breast cancers.

Conclusions

Our results provide a new insight into the genomic complexity of breast cancer. Genomic instability dependent on chromosomal breakage events is not stochastic, targeting some chromosomes clearly more than others. We report a much higher percentage of chromothripsis than described previously in other cancers and this suggests that massive genomic rearrangements occurring in a single catastrophic event may shape many breast cancer genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-579) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analysing the genomic organization of resistance genes in this crop.

Results

With searches for Pfam domains and manual curation of the cassava gene annotations, we identified 228 NBS-LRR type genes and 99 partial NBS genes. These represent almost 1% of the total predicted genes and show high sequence similarity to proteins from other plant species. Furthermore, 34 contained an N-terminal toll/interleukin (TIR)-like domain, and 128 contained an N-terminal coiled-coil (CC) domain. 63% of the 327 R genes occurred in 39 clusters on the chromosomes. These clusters are mostly homogeneous, containing NBS-LRRs derived from a recent common ancestor.

Conclusions

This study provides insight into the evolution of NBS-LRR genes in the cassava genome; the phylogenetic and mapping information may aid efforts to further characterize the function of these predicted R genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1554-9) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression.

Results

In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development.

Conclusions

Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity.  相似文献   

7.
8.
9.
10.
11.
12.

Background

The study of nuclear architecture using Chromosome Conformation Capture (3C) technologies is a novel frontier in biology. With further reduction in sequencing costs, the potential of Hi-C in describing nuclear architecture as a phenotype is only about to unfold. To use Hi-C for phenotypic comparisons among different cell types, conditions, or genetic backgrounds, Hi-C data processing needs to be more accessible to biologists.

Results

HiCdat provides a simple graphical user interface for data pre-processing and a collection of higher-level data analysis tools implemented in R. Data pre-processing also supports a wide range of additional data types required for in-depth analysis of the Hi-C data (e.g. RNA-Seq, ChIP-Seq, and BS-Seq).

Conclusions

HiCdat is easy-to-use and provides solutions starting from aligned reads up to in-depth analyses. Importantly, HiCdat is focussed on the analysis of larger structural features of chromosomes, their correlation to genomic and epigenomic features, and on comparative studies. It uses simple input and output formats and can therefore easily be integrated into existing workflows or combined with alternative tools.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0678-x) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.

Background

By reshuffling genomes, structural genomic reorganizations provide genetic variation on which natural selection can work. Understanding the mechanisms underlying this process has been a long-standing question in evolutionary biology. In this context, our purpose in this study is to characterize the genomic regions involved in structural rearrangements between human and macaque genomes and determine their influence on meiotic recombination as a way to explore the adaptive role of genome shuffling in mammalian evolution.

Results

We first constructed a highly refined map of the structural rearrangements and evolutionary breakpoint regions in the human and rhesus macaque genomes based on orthologous genes and whole-genome sequence alignments. Using two different algorithms, we refined the genomic position of known rearrangements previously reported by cytogenetic approaches and described new putative micro-rearrangements (inversions and indels) in both genomes. A detailed analysis of the rhesus macaque genome showed that evolutionary breakpoints are in gene-rich regions, being enriched in GO terms related to immune system. We also identified defense-response genes within a chromosome inversion fixed in the macaque lineage, underlying the relevance of structural genomic changes in evolutionary and/or adaptation processes. Moreover, by combining in silico and experimental approaches, we studied the recombination pattern of specific chromosomes that have suffered rearrangements between human and macaque lineages.

Conclusions

Our data suggest that adaptive alleles – in this case, genes involved in the immune response – might have been favored by genome rearrangements in the macaque lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-530) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Meta-analysis has become a popular approach for high-throughput genomic data analysis because it often can significantly increase power to detect biological signals or patterns in datasets. However, when using public-available databases for meta-analysis, duplication of samples is an often encountered problem, especially for gene expression data. Not removing duplicates could lead false positive finding, misleading clustering pattern or model over-fitting issue, etc in the subsequent data analysis.

Results

We developed a Bioconductor package Dupchecker that efficiently identifies duplicated samples by generating MD5 fingerprints for raw data. A real data example was demonstrated to show the usage and output of the package.

Conclusions

Researchers may not pay enough attention to checking and removing duplicated samples, and then data contamination could make the results or conclusions from meta-analysis questionable. We suggest applying DupChecker to examine all gene expression data sets before any data analysis step.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-323) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.

Background

Identification of tumor heterogeneity and genomic similarities across different cancer types is essential to the design of effective stratified treatments and for the discovery of treatments that can be extended to different types of tumors. However, systematic investigations on comprehensive molecular profiles have not been fully explored to achieve this goal.

Results

Here, we performed a network-based integrative pan-cancer genomic analysis on >3000 samples from 12 cancer types to uncover novel stratifications among tumors. Our study not only revealed recurrently reported cross-cancer similarities, but also identified novel ones. The macro-scale stratification demonstrates strong clinical relevance and reveals consistent risk tendency among cancer types. The micro-scale stratification shows essential pan-cancer heterogeneity with subgroup-specific gene network characteristics and biological functions.

Conclusions

In summary, our comprehensive network-based pan-cancer stratification provides valuable information about inter- and intra- cancer stratification for patient clinical assessments and therapeutic strategies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1687-x) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods.

Results

On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments.

Conclusions

The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0383-1) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general.

Results

In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species.

Conclusions

Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-440) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号