首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the length of the growing season and the intensity of herbivory often vary along climatic gradients, which may result in divergent selection on plant phenology, and on resistance and tolerance to herbivory. In Sweden, the length of the growing season and the number of insect herbivore species feeding on the perennial herb Lythrum salicaria decrease from south to north. Previous common‐garden experiments have shown that northern L. salicaria populations develop aboveground shoots earlier in the summer and finish growth before southern populations do. We tested the hypotheses that resistance and tolerance to damage vary with latitude in L. salicaria and are positively related to the intensity of herbivory in natural populations. We quantified resistance and tolerance of populations sampled along a latitudinal gradient by scoring damage from natural herbivores and fitness in a common‐garden experiment in the field and by documenting oviposition and feeding preference by specialist leaf beetles in a glasshouse experiment. Plant resistance decreased with latitude of origin, whereas plant tolerance increased. Oviposition and feeding preference in the glasshouse and leaf damage in the common‐garden experiment were negatively related to damage in the source populations. The latitudinal variation in resistance was thus consistent with reduced selection from herbivores towards the northern range margin of L. salicaria. Variation in tolerance may be related to differences in the timing of damage in relation to the seasonal pattern of plant growth, as northern genotypes have developed further than southern have when herbivores emerge in early summer.  相似文献   

2.
The joint effects of multiple herbivores on their shared host plant have received increasing interest recently. The influence of herbivores on population dynamics of their host plants, especially the relative roles of different types of damage, is, however, still poorly understood. Here, we present a modelling approach, including both deterministic and stochastic matrix modelling, to be used in estimating fitness effects of multiple herbivores on perennial plants. We examined the effects and relative roles of two specialist herbivores, a pre-dispersal seed predator, Euphranta connexa, and a leaf-feeding moth, Abrostola asclepiadis, on the population dynamics and long-term fitness of their shared host plant, a long-lived perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). We collected demographic data during 3 years and combined these data with the effects of natural levels of herbivory measured from the same individuals. We found that both seed predation and leaf herbivory reduced population growth of V. hirundinaria, but only very high damage levels changed the growth trend of the vigorously growing study populations from positive to negative. Demographic modelling indicated that seed predation had a greater impact on plant population growth than leaf herbivory. The effect of leaf herbivory was weaker and diminished with increasing level of seed predation. Evaluation of individual fitness components, however, suggested that leaf herbivory contributed more strongly to host plant fitness than seed predation. Our results emphasize that understanding the effects of a particular herbivore on plant population dynamics requires also knowledge on other herbivores present in the system, because the effect of a particular type of herbivory on plant population dynamics is likely to vary according to the intensity of other types of herbivory. Furthermore, evaluating herbivore impact from using individual fitness components does not necessarily reflect the long-term effects on total plant fitness.  相似文献   

3.
Leimu R  Kloss L  Fischer M 《Ecology letters》2008,11(10):1101-1110
Inbreeding is common in plant populations and can affect plant fitness and resistance against herbivores. These effects are likely to depend on population history. In a greenhouse experiment with plants from 17 populations of Lychnis flos-cuculi, we studied the effects of experimental inbreeding on resistance and plant fitness. Depending on the levels of past herbivory and abiotic factors at the site of plant origin, we found either inbreeding or outbreeding depression in herbivore resistance. Furthermore, when not damaged experimentally by snail herbivores, plants from populations with higher heterozygosity suffered from inbreeding depression and those from populations with lower heterozygosity suffered from outbreeding depression. These effects of inbreeding and outbreeding were not apparent under experimental snail herbivory. We conclude that inbreeding effects on resistance and plant fitness depend on population history. Moreover, herbivory can mask inbreeding effects on plant fitness. Thus, understanding inbreeding effects on plant fitness requires studying multiple populations and considering population history and biotic interactions.  相似文献   

4.
Although a number of investigations have concluded that lower latitudes are associated with increases in herbivore abundance and plant damage, the generality of this pattern is still under debate. Multiple factors may explain the lack of consistency in latitude–herbivory relationships. For instance, latitudinal variation in herbivore pressure may be shaped entirely or not by climatic variables, or vary among herbivore guilds with differing life‐history traits. Additionally, the strength of top–down effects from natural enemies on herbivores might also vary geographically and influence latitude–herbivory patterns. We carried out a field study where we investigated the effects of latitude and climate on herbivory by a seed‐eating caterpillar and leaf chewers, as well as parasitism associated to the former across 30 populations of the perennial herb Ruellia nudiflora (Acanthaceae). These populations were distributed along a 5° latitudinal gradient from northern Yucatan (Mexico) to southern Belize, representing one‐third of the species' latitudinal distribution and the entirety and one‐third of the precipitation and temperature gradient of this species' distribution (respectively). We found opposing latitudinal gradients of seed herbivory and leaf herbivory, and this difference appeared to be mediated by contrasting effects of climate on each guild. Specifically, univariate regressions showed that seed herbivory increased at higher latitudes and with colder temperatures, while leaf herbivory increased toward the equator and with wetter conditions. Multiple regressions including temperature, precipitation and latitude only found significant effects of temperature for seed herbivory and latitude for leaf herbivory. Accordingly, that latitudinal variation in seed herbivory appears to be driven predominantly by variation in temperature whereas latitudinal variation in leaf herbivory was apparently driven by other unexplored correlates of latitude. Parasitism did not exhibit variation with latitude or climatic factors. Overall, these findings underscore that the factors driving latitudinal clines in herbivory might vary even among herbivore species coexisting on the same host plant.  相似文献   

5.
In tristylous plant populations, style-morph frequencies are governed by an interaction between frequency-dependent selection due to disassortative mating and stochastic processes. Provided that there are no inherent fitness differences among morphs, frequency-dependent selection should result in equal morph frequencies at equilibrium. Stochastic models indicate that the short-styled morph has the highest and the long-styled morph the lowest probability of being lost from local populations as a result of random processes. We surveyed the morph composition of 82 populations of the tristylous, self-incompatible herb Lythrum salicaria in two archipelagos, one in central and one in northern Sweden, located close to the range-margin of the species. To examine whether deviations from even morph frequencies can be explained by among-morph differences in reproductive success, we quantified flower and seed production in six and three populations in the northern and southern archipelago, respectively, and we recorded segregation ratios in offspring produced in six trimorphic populations in the northern area. Seed germination and offspring growth were studied in the greenhouse. Ninety percent of the populations in the southern archipelago (N = 31) and 69% of the populations in the northern archipelago (N = 35) were trimorphic; the remaining populations were dimorphic (only populations consisting of at least three flowering plants considered). Dimorphic populations were smaller than trimorphic populations, as predicted by stochastic models. There was a striking difference in the morph composition of L. salicaria populations between the two archipelagos. In the southern archipelago, there was a slight excess of the long-styled morph and a corresponding deficiency of the short-styled morph. In contrast, the northern populations were characterized by a marked deficiency of the mid-styled morph: the average frequency of the mid-styled morph in trimorphic populations was 0.21, and nine of eleven dimorphic populations lacked the mid-styled morph. In both archipelagos, the long-styled morph (the most common morph) produced about 20% fewer seeds per fruit than the other morphs. The long-styled morph also tended to produce fewer seeds per plant. A hand-pollination experiment performed in two of the northern populations indicated that seed production per flower was pollen-limited in the long-styled morph but not in the other two morphs. Seed germination and offspring size after 24 weeks of growth did not differ among morphs. The mid-styled morph tended to have a higher representation in the offspring than in the parental generation in all six trimorphic populations studied further indicating that the deficiency of the mid-styled morph in the northern archipelago does not represent an equilibrium. Taken together, the results do not support the hypothesis that morph-specific differences in reproductive success can account for deviations from even morph frequencies in L. salicaria. It is suggested that among-morph differences in other components of fitness and historical factors may contribute to the current morph structure.  相似文献   

6.
Natural populations of wild cabbage (Brassica oleracea) show significant qualitative diversity in heritable aliphatic glucosinolates, a class of secondary metabolites involved in defence against herbivore attack. One candidate mechanism for the maintenance of this diversity is that differential responses among herbivore species result in a net fitness balance across plant chemotypes. Such top-down differential selection would be promoted by consistent responses of herbivores to glucosinolates, temporal variation in herbivore abundance, and fitness impacts of herbivore attack on plants varying in glucosinolate profile. A 1-year survey across 12 wild cabbage populations demonstrated differential responses of herbivores to glucosinolates. We extended this survey to investigate the temporal consistency of these responses, and the extent of variation in abundance of key herbivores. Within plant populations, the aphid Brevicoryne brassicae consistently preferred plants producing the glucosinolate progoitrin. Among populations, increasing frequencies of sinigrin production correlated positively with herbivory by whitefly Aleyrodes proletella and negatively with herbivory by snails. Two Pieris butterfly species showed no consistent response to glucosinolates among years. Rates of herbivory varied significantly among years within populations, but the frequency of herbivory at the population scale varied only for B. brassicae. B. brassicae emerges as a strong candidate herbivore to impose differential selection on glucosinolates, as it satisfies the key assumptions of consistent preferences and heterogeneity in abundance. We show that variation in plant secondary metabolites structures the local herbivore community and that, for some key species, this structuring is consistent over time. We discuss the implications of these patterns for the maintenance of diversity in plant defence chemistry.  相似文献   

7.
Hunt-Joshi TR  Blossey B 《Oecologia》2005,142(4):554-563
Interspecific interactions of herbivores sharing a host plant may be important in structuring herbivore communities. We investigated host plant-mediated interactions of root (Hylobius transversovittatus) and leaf herbivores (Galerucella calmariensis), released to control purple loosestrife (Lythrum salicaria) in North America, in field and potted plant experiments. In the potted plant experiments, leaf herbivory by G. calmariensis reduced H. transversovittatus larval survival (but not larval development) but did not affect oviposition preference. Root herbivory by H. transversovittatus did not affect either G. calmariensis fitness or oviposition preference. In field cage experiments, we found no evidence of interspecific competition between root and leaf herbivores over a 4-year period. Our data suggest that large populations of leaf beetles can negatively affect root-feeding larvae when high intensity of leaf damage results in partial or complete death of belowground tissue. Such events may be rare occurrences (or affected by experimental venue) since field data differed from data obtained from potted plant experiments, particularly at high leaf beetle densities. Interspecific interactions between G. calmariensis and H. transversovittatus are possible and may negatively affect either species, but this is unlikely to occur unless heavy feeding damage results in partial or complete plant death.  相似文献   

8.
The effects of floral herbivores on floral traits may result in alterations in pollinator foraging behaviour and subsequently influence plant reproductive success. Fed-upon plants may have evolved mechanisms to compensate for herbivore-related decreased fecundity. We conducted a series of field experiments to determine the relative contribution of floral herbivores and pollinators to female reproductive success in an alpine herb, Pedicularis gruina, in two natural populations over two consecutive years. Experimental manipulations included bagging, hand supplemental, geitonogamous pollination, and simulated floral herbivory. Bumblebees not only avoided damaged flowers and plants but also decreased successive visits of flowers in damaged plants, and the latter may reduce the level of geitonogamy. Although seed set per fruit within damaged plants was higher than that in intact plants, total seed number in damaged plants was less than that in intact plants, since floral herbivory-mediated pollinator limitation led to a sharp reduction of fruit set. Overall, the results suggest that resource reallocation within inflorescences of damaged plants may partially compensate for a reduction in seed production. Additionally, a novel finding was the decrease in successive within-plant bumblebee visits following floral herbivory. This may increase seed quantity and quality of P. gruina since self-compatible species exhibit inbreeding depression. The patterns of compensation of herbivory and its consequences reported in this study give an insight into the combined effects of interactions between floral herbivory and pollination on plant reproductive fitness.  相似文献   

9.
Elzinga JA  Turin H  van Damme JM  Biere A 《Oecologia》2005,144(3):416-426
Habitat fragmentation can affect levels of herbivory in plant populations if plants and herbivores are differentially affected by fragmentation. Moreover, if herbivores are top–down controlled by predators or parasitoids, herbivory may also be affected by differential effects of fragmentation on herbivores and their natural enemies. We used natural Silene latifolia populations to examine the effects of plant population size and isolation on the level of herbivory by the seed predating noctuid Hadena bicruris and the rate of parasitism of the herbivore by its parasitoids. In addition, we examined oviposition rate, herbivory and parasitism in differently sized experimental populations. In natural populations, the level of herbivory increased and the rate of parasitism decreased with decreasing plant population size and increasing degree of isolation. The number of parasitoid species also declined with decreasing plant population size. In the experimental populations, the level of herbivory was also higher in smaller populations, in accordance with higher oviposition rates, but was not accompanied by lower rates of parasitism. Similarly, oviposition rate and herbivory, but not parasitism rate, increased near the edges of populations. These results suggests that in this system with the well dispersing herbivore H. bicruris, habitat fragmentation increases herbivory of the plant through a behavioural response of the moth that leads to higher oviposition rates in fragmented populations with a reduced population size, increased isolation and higher edge-to-interior ratio. Although the rate of parasitism and the number of parasitoid species declined with decreasing population size in the natural populations, we argue that in this system it is unlikely that this decline made a major contribution to increased herbivory.  相似文献   

10.
Abstract

The deceptive breeding system in the Orchidaceae family has been studied for decades to disentangle how pollination service can occur. Moreover, the interference of introduced herbivores on population development has been reported to affect the reproductive output in different plant species, including orchids. In this study, the breeding system of the food-deceptive species Anacamptis longicornu has been assessed. The spatio-temporal variation in both male and female reproductive fitness and its relationship with plant features were also analyzed. The possible herbivory effects were investigated by an exclusion experiment using two types of cages. The results confirm that this species is pollinator dependent and mostly allogamous but is also self-compatible. This species showed high values of cumulative inbreeding depression index for fruit set and seed viability parameters and was highly pollen-limited. Male fitness was always higher than female fitness between years and locations, and both parameters showed spatio-temporal variation. The use of cages excluded herbivores but, eventually, also excluded pollinators, so that both male and female reproductive success parameters decreased significantly in the complete exclusion treatment. The strong dependence of the species’ fitness on pollinator-mediated pollen transfer must be considered for the long-term conservation of A. longicornu.  相似文献   

11.
Plants often lose natural enemies (herbivores and pathogens) while invading new geographic regions, as predicted by the Enemy Release Hypothesis. However, a similar reduction in attack might occur at a more local scale within an invader’s range as plants in marginal areas escape enemies that fail to find them or cannot maintain local populations. In this study, we test the hypothesis that isolated populations near the northern edge of an invader’s range escape the enemies present in more southern populations, using the non-native monocarpic biennial, common burdock (Arctium minus), as a model species. In southern Ontario, this plant is attacked by a wide range of insect herbivores, including generalist leaf chewers as well as leaf-mining flies (Liriomyza arctii, Calycomyza flavinotum) and an abundant lepidopteran seed predator (Metzneria lappella). Surveys over an 815 km transect from temperate southern to boreal northern Ontario indicate that damage by all of these enemies declines sharply with latitude, while plants in more northern areas are slightly larger and more fecund. Critically, seed parasitism drops from more than 85 % in the south to less than 25 % in the north. These results indicate that populations of Arctium near this species’ northern limit escape many of their usual natural enemies, potentially counteracting less favourable environmental conditions. Such escape from enemies near invaders’ range margins may accelerate further spread, including expected migration in response to climate change.  相似文献   

12.
Akiyama R  Ågren J 《PloS one》2012,7(1):e30015

Background

The effect of herbivory on plant fitness varies widely. Understanding the causes of this variation is of considerable interest because of its implications for plant population dynamics and trait evolution. We experimentally defoliated the annual herb Arabidopsis thaliana in a natural population in Sweden to test the hypotheses that (a) plant fitness decreases with increasing damage, (b) tolerance to defoliation is lower before flowering than during flowering, and (c) defoliation before flowering reduces number of seeds more strongly than defoliation during flowering, but the opposite is true for effects on seed size.

Methodology/Principal Findings

In a first experiment, between 0 and 75% of the leaf area was removed in May from plants that flowered or were about to start flowering. In a second experiment, 0, 25%, or 50% of the leaf area was removed from plants on one of two occasions, in mid April when plants were either in the vegetative rosette or bolting stage, or in mid May when plants were flowering. In the first experiment, seed production was negatively related to leaf area removed, and at the highest damage level, also mean seed size was reduced. In the second experiment, removal of 50% of the leaf area reduced seed production by 60% among plants defoliated early in the season at the vegetative rosettes, and by 22% among plants defoliated early in the season at the bolting stage, but did not reduce seed output of plants defoliated one month later. No seasonal shift in the effect of defoliation on seed size was detected.

Conclusions/Significance

The results show that leaf damage may reduce the fitness of A. thaliana, and suggest that in this population leaf herbivores feeding on plants before flowering should exert stronger selection on defence traits than those feeding on plants during flowering, given similar damage levels.  相似文献   

13.
Genetic variation in plant populations for resistance to pathogens and herbivores might be maintained by parasite-mediated negative frequency-dependent selection (FDS). But it is difficult to observe the time-lagged oscillations between host and parasite genotypes that should result from FDS. To evaluate the potential for FDS, we tested for local adaptation of parasites to common clones, the role of host genetic diversity in resistance to parasites, and genetic correlations among fitness, parasitism, and the frequency of host clones. We studied three populations of Arabis holboellii, a short-lived apomictic (asexual by seed) plant attacked by rust fungi and insect herbivores. To estimate clone frequency, we used polymorphic allozyme markers on 200 individuals in each population in 1990 and in 2000. We also recorded levels of parasitism and host fitness (fruit production). Only the rust fungi showed evidence for local host adaptation; they usually increased in incidence as a function of clone frequency, and they tracked temporal change in clone frequency. In further support of FDS, parasitism was lower in populations with higher genetic diversity. However, total parasitism (herbivory and disease combined) decreased as host clone frequency and fitness increased. Thus, although the highly virulent rust pathogen showed potential for driving the cycles that result from FDS, this apparently does not occur in the populations studied because the host clones were also attacked by herbivores.Co-ordinating editor: J.F. Stuefer  相似文献   

14.
In plant–arthropod associations, the first herbivores to colonise a plant may directly or indirectly affect community assembly on that particular plant. Whether the order of arrival of different arthropod species further modulates community assembly and affects plant fitness remains unclear. Using wild Brassica oleracea plants in the field, we manipulated the order of arrival of early‐season herbivores that belong to different feeding guilds, namely the aphid Brevicoryne brassicae and caterpillars of Plutella xylostella. We investigated the effect of herbivore identity and order of arrival on community assembly on two B. oleracea plant populations during two growth seasons. For this perennial plant, we evaluated whether foliar herbivory also affected herbivore communities on the flowers and if these interactions affected plant seed production. Aphid infestation caused an increase in parasitoid abundance, but caterpillars modulated these effects, depending on the order of herbivore infestation and plant population. In the second growth season, when plants flowered, the order of infestation of leaves with aphids and caterpillars more strongly affected abundance of herbivores feeding on the flowers than those feeding on leaves. Infestation with caterpillars followed by aphids caused an increase in flower‐feeding herbivores compared to the reversed order of infestation in one plant population, whereas the opposite effects were observed for the other plant population. The impact on plant seed set in the first reproductive year was limited. Our work shows that the identity and arrival order of early season herbivores may have long‐term consequences for community composition on individual plants and that these patterns may vary among plant populations. We discuss how these community processes may affect plant fitness and speculate on the implications for evolution of plant defences.  相似文献   

15.
Tatyana A. Rand 《Oecologia》2002,132(4):549-558
Herbivore damage and impact on plants often varies spatially across environmental gradients. Although such variation has been hypothesized to influence plant distribution, few quantitative evaluations exist. In this study I evaluated patterns of insect herbivory on an annual forb, Atriplex patula var. hastata, across a salt marsh tidal gradient, and performed experiments to examine potential causes and consequences of variation in herbivory. Damage to plants was generally twice as great at mid-tidal elevations, which are more frequently inundated, than at higher, less stressful, elevations at five of six surveyed sites. Field herbivore assays and herbivore preference experiments eliminated the hypothesis that plant damage was mediated by herbivore response to differences in host plants across the gradient. Alternately, greater herbivore densities in the mid-marsh, where densities of an alternate host plant (Salicornia europaea) were high, were associated with greater levels of herbivory on Atriplex, suggesting spillover effects. The effect of insect herbivores on host plant performance varied between the two sites studied more intensively. Where overall herbivore damage to plants was low, herbivory had no detectable effect on plant survival or seed production, and plant performance did not significantly differ between zones. However, where herbivore damage was high, herbivores dramatically reduced both plant survival (>50%) and fruit production (40-70%), and their effects were stronger in the harsher mid-marsh than the high marsh. Thus herbivores likely play a role in maintaining lower Atriplex densities in mid-marsh. Overall, these results suggest that variation in herbivore pressure can be an important determinant of patterns of plant abundance across environmental gradients.  相似文献   

16.
Integrative studies of plant–animal interactions that incorporate the multiple effects of interactions are important for discerning the importance of each factor within the population dynamics of a plant species. The low regeneration capacity of many Acacia species in arid savannas is a consequence of a combination of reduction in seed dispersal and high seed predation. Here we studied how ungulates (acting as both seed dispersers and herbivores) and bruchid beetles (post-dispersal seed predators) modulate the population dynamics of A. raddiana, a keystone species in the Middle East. We developed two simulation models of plant demography: the first included seed ingestion by ungulates and seed predation by bruchids, whereas the second model additionally incorporated herbivory by ungulates. We also included the interacting effects of seed removal and body mass, because larger ungulates destroy proportionally fewer seeds and enhance seed germination. Simulations showed that the negative effect of seed predation on acacia population size was compensated for by the positive effect of seed ingestion at 50 and 30% seed removal under scenarios with and without herbivory, respectively. Smaller ungulates (e.g., <35 kg) must necessarily remove tenfold more seeds than larger ungulates (e.g., >250 kg) to compensate for the negative effect of seed predation. Seedling proportion increased with seed removal in the model with herbivory. Managing and restoring acacia seed dispersers is key to conserving acacia populations, because low-to-medium seed removal could quickly restore their regeneration capacity.  相似文献   

17.
Identifying the factors that affect a plant’s probability of being found and damaged by herbivores has been a central topic in the study of herbivory. Although herbivory could have important negative consequences on carnivorous plants, their interaction with herbivores remains largely unexplored. We evaluated the effect of spatial variation in light environment (sunny, shade and full-shade sites) on the pattern of leaf herbivory and florivory of the carnivorous plant Pinguicula moranensis. Plants’ overall probability of leaf damage was high (74.24%). Mean herbivory was four times higher in the sunny and shade sites than the observed in the full-shade site. Nearly 8% of plants suffered damage to reproductive structures, although the probability of florivory was similar among sites. Discussion addressed the inter-site variation in mean herbivory considering the effect of light exposure and the impact that herbivory could have on fitness components of this carnivorous plant.  相似文献   

18.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

19.
Both plant competition and plant defense affect biodiversity and food web dynamics and are central themes in ecology research. The evolutionary pressures determining plant allocation toward defense or competition are not well understood. According to the growth–differentiation balance hypothesis (GDB), the relative importance of herbivory and competition have led to the evolution of plant allocation patterns, with herbivore pressure leading to increased differentiated tissues (defensive traits), and competition pressure leading to resource investment towards cellular division and elongation (growth-related traits). Here, we tested the GDB hypothesis by assessing the competitive response of lima bean (Phaseolus lunatus) plants with quantitatively different levels of cyanogenesis—a constitutive direct, nitrogen-based defense against herbivores. We used high (HC) and low cyanogenic (LC) genotypes in different competition treatments (intra-genotypic, inter-genotypic, interspecific), and in the presence or absence of insect herbivores (Mexican bean beetle, Epilachna varivestis) to quantify vegetative and generative plant parameters (above and belowground biomass as well as seed production). Highly defended HC-plants had significantly lower aboveground biomass and seed production than LC-plants when grown in the absence of herbivores implying significant intrinsic costs of plant cyanogenesis. However, the reduced performance of HC- compared to LC-plants was mitigated in the presence of herbivores. The two plant genotypes exhibited fundamentally different responses to various stresses (competition, herbivory). Our study supports the GDB hypothesis by demonstrating that competition and herbivory affect different plant genotypes differentially and contributes to understanding the causes of variation in defense within a single plant species.  相似文献   

20.
Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号