首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.  相似文献   

2.
The glucosaminoglycans isolated from the skin of control and streptozotocin-diabetic rats were fractionated on ion-exchange chromatography into a heparan sulfate (HS)-like and a heparin-like species. In addition, a low sulfated fraction was isolated from the diabetics. The HS and heparin-like fractions isolated from the diabetics (in contrast to the low sulfated fractions) retained high affinity for the acidic (FGF-1) and basic (FGF-2) fibroblast growth factors. In culture, the fractions purified from the control rats and the heparin-like material isolated from the diabetics mediated the biological activity of both FGFs in a dose-dependent manner. By contrast, the diabetic HS-like fractions promoted the biological activity of FGF-2 but not of FGF-1. The results support the idea that the structural motives in HS required for FGF-1 and FGF-2 mediated receptor signalling are different. They may be relevant to the impaired wound healing observed in the disease. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
Fetal calf serum (FCS) and PMA (phorbol 12-myristate-13-acetate) specifically stimulate the synthesis of heparan sulfate proteoglycan in endothelial cells. Staurosporine and n-butanol, kinase inhibitors, abolish the PMA effect. Forskolin and 8-bromo adenosine 3′:5′-cyclic monophosphate, activators of, respectively, adenylate cyclase and protein kinase A cannot reproduce the PMA effect. The kinetics of cell entry into S phase of the endothelial cells was determined by DNA synthesis ([3H]-thymidine and Br-dU incorporation), and flow cytometry. The mitogenic effect of fetal calf serum is abolished by PMA. Also, PMA pre-treatment inhibits the enhanced synthesis of heparan sulfate proteoglycan after a second PMA exposure. Remarkably, the stimulation of heparan sulfate proteoglycan synthesis by fetal calf serum and PMA seems to be mainly restricted to G1 phase. Therefore fetal calf serum and PMA cause an enhanced synthesis of heparan sulfate proteoglycan, and PMA causes a cell cycle block at G1 phase. J. Cell. Biochem. 70:563–572, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure.  相似文献   

5.
The heparan sulfate proteoglycans that bind and activate antithrombin III (aHSPGs) are synthesized by endothelial cells as well as other nonvascular cells. We determined the amounts of cell surface–associated and soluble aHSPGs generated by the rat fat pad endothelial (RFP) cell line and the fibroblast (LTA) cell line. The RFP cells exhibit higher levels of cell surface–associated aHSPGs as compared to LTA cells, whereas LTA cells release larger amounts of soluble aHSPGs as compared to RFP cells. After confluence RFP cells show an increase in both cell surface–associated and soluble aHSPGs. In contrast, postconfluent LTA cells maintain a constant level of cell surface–associated and soluble aHSPGs. These observations indicate that different cells types can preferentially accumulate aHSPGs as cell surface–associated or soluble forms which could reflect alternate biological functions.  相似文献   

6.
Muscular dystrophies are characterized by continuous cycles of degeneration and regeneration that result in extensive fibrosis and a progressive diminution of muscle mass. Cell surface heparan sulfate proteoglycans are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with a great variety of ligands, including ECM constituents, adhesion molecules, and growth factors. In this study, we evaluated the expression and localization of three heparan sulfate proteoglycans in the biopsies of Duchenne muscular dystrophy (DMD) patients. Through SDS-PAGE analyses followed by specific identification of heparitinase-digested proteins with an anti-Delta-heparan sulfate specific monoclonal antibodies, we observed an increase of three forms of heparan sulfate proteoglycans, corresponding to perlecan, syndecan-3, and glypican-1. Immunohistochemistry analyses indicated a differential localization for these proteoglycans: glypican-1 and perlecan were found mainly associated to ECM structures, while syndecan-3 was associated to muscle fibers. These results suggest that the amount of specific heparan sulfate proteoglycans is augmented in skeletal muscle in DMD patients presenting a differential localization.  相似文献   

7.
Heparin and heparan sulfate: biosynthesis, structure and function   总被引:7,自引:0,他引:7  
Heparin and heparan sulfate glycosaminoglycans are acidic complex polysaccharides found on the cell surface and in the extracellular matrix. Recent progress has uncovered a virtual explosion of important roles of these biopolymers in fundamental biological processes. Advances in the understanding of biosynthesis and structure and the development of novel analytical methods for composition and sequence analysis have provided remarkable insights into structure/function relationships of these complex and once elusive polysaccharides.  相似文献   

8.
Chen J  Duncan MB  Carrick K  Pope RM  Liu J 《Glycobiology》2003,13(11):785-794
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine to generate 3-O-sulfated heparan sulfate (HS), which is a rare component in HS from natural sources. We previously reported that 3-O- sulfotransferase isoform 5 (3-OST-5) generates both an antithrombin-binding site to exhibit anticoagulant activity and a binding site for herpes simplex virus 1 glycoprotein D to serve as an entry receptor for herpes simplex virus. In this study, we characterize the substrate specificity of 3-OST-5 using the purified enzyme. The enzyme was expressed in insect cells using the baculovirus expression approach and was purified by using heparin-Sepharose and 3',5'-ADP- agarose chromatographies. As expected, the purified enzyme generates both an antithrombin binding site and a glycoprotein D binding site. We isolated IdoUA-AnMan3S and IdoUA-AnMan3S6S from nitrous acid-degraded 3-OST-5-modified HS (pH 1.5), suggesting that 3-OST-5 enzyme sulfates the glucosamine residue that is linked to an iduronic acid residue at the nonreducing end. We also isolated a disaccharide with a structure of DeltaUA2S-GlcNS3S and a tetrasaccharide with a structure of DeltaUA2S-GlcNS-IdoUA2S-GlcNH23S6S from heparin lyases-digested 3-OST-5-modified HS. Our results suggest that 3-OST-5 enzyme sulfates both N-sulfated glucosamine and N-unsubstituted glucosamine residues. Taken together, the results indicate that 3-OST-5 has broader substrate specificity than those of 3-OST-1 and 3-OST-3. The unique substrate specificity of 3-OST-5 serves as an additional tool to study the mechanism for the biosynthesis of biologically active HS.  相似文献   

9.
10.
11.
12.
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays essential physiological and pathophysiological functions. The biosynthesis of HS involves a series of specialised sulfotransferases, an epimerase and glycosyl transferases. The availability of these enzymes offers a promising method to prepare HS polysaccharides and structurally defined oligosaccharides. Given the fact that chemical synthesis of large HS oligosaccharides is extremely difficult, preparation of HS using a chemoenzymatic approach has gained momentum. This review article summarises recent progress on the development of a chemoenzymatic approach to prepare HS and HS oligosaccharides.  相似文献   

13.
Cell surface heparan sulfate proteoglycan and the neoplastic phenotype   总被引:3,自引:0,他引:3  
Cell surface proteoglycans are strategically positioned to regulate interactions between cells and their surrounding environment. Such interactions play key roles in several biological processes, such as cell recognition, adhesion, migration, and growth. These biological functions are in turn necessary for the maintenance of differentiated phenotype and for normal and neoplastic development. There is ample evidence that a special type of proteoglycan bearing heparan sulfate side chains is localized at the cell surface in a variety of epithelial and mesenchymal cells. This molecule exhibits selective patterns of reactivity with various constituents of the extracellular matrix and plasma membrane, and can act as growth modulator or as a receptor. Certainly, during cell division, membrane constituents undergo profound rearrangement, and proteoglycans may be intimately involved in such processes. The present work will focus on recent advances in our understanding of these complex macromolecules and will attempt to elucidate the biosynthesis, the structural diversity, the modes of cell surface association, and the turnover of heparan sulfate proteoglycans in various cell systems. It will then review the multiple proposed roles of this molecule, with particular emphasis on the binding properties and the interactions with various intracellular and extracellular elements. Finally, it will focus on the alterations associated with the neoplastic phenotype and will discuss the possible consequences that heparan sulfate may have on the growth of normal and transformed cells.  相似文献   

14.
In this study, the internalization mechanism of basic fibroblast growth factor (bFGF) at the blood-brain barrier (BBB) was investigated using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4 cells) as an in vitro model of the BBB and the corresponding receptor was identified using immunohistochemical analysis. The heparin-resistant binding of [125I]bFGF to TM-BBB4 cells was found to be time-, temperature-, osmolarity- and concentration-dependent. Kinetic analysis of the cell-surface binding of [125I]bFGF to TM-BBB4 cells revealed saturable binding with a half-saturation constant of 76 +/- 24 nm and a maximal binding capacity of 183 +/- 17 pmol/mg protein. The heparin-resistant binding of [125I]bFGF to TM-BBB4 was significantly inhibited by a cationic polypeptide poly-L-lysine (300 micro m), and compounds which contain a sulfate moiety, e.g. heparin and chondroitin sulfate-B (each 10 micro g/mL). Moreover, the heparin-resistant binding of [125I]bFGF in TM-BBB4 cells was significantly reduced by 50% following treatment with sodium chlorate, suggesting the loss of perlecan (a core protein of heparan sulfate proteoglycan, HSPG) from the extracellular matrix of the cells. This type of binding is consistent with the involvement HSPG-mediated endocytosis. RT-PCR analysis revealed that HSPG mRNA and FGFR1 and FGFR2 (tyrosine-kinase receptors for bFGF) mRNA are expressed in TM-BBB4 cells. Moreover, immunohistochemical analysis demonstrated that perlecan is expressed on the abluminal membrane of the mouse brain capillary. These results suggest that bFGF is internalized via HSPG, which is expressed on the abluminal membrane of the BBB. HSPG at the BBB may play a role in maintaining the BBB function due to acceptance of the bFGF secreted from astrocytes.  相似文献   

15.
Glycosaminoglycans complex with constituents of normal human serum, a finding that was exploited to develop a competitive binding assay for these substances. Heparan sulfate was isolated from renal cortex and radiolabeled with tritiated borohydride. The elution pattern of the radiolabeled material on Sephadex G-25, Bio-Gel P-30, and AG- 1X8 resin was identical to that of unlabeled heparan sulfate. The tritiated heparan sulfate formed radiolabeled precipitates when incubated with serum and zinc acetate. Binding was dose dependent and saturable. Heparin, heparan sulfate, and the chondroitin sulfates, but not hyaluronate or keratan sulfate, competed with the radiolabeled heparan sulfate for binding in a dose-dependent manner. The assay is specific for heparin polysaccharides in chondroitinase ABC-treated samples and is sensitive to microgram quantities.  相似文献   

16.
17.
Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet β-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in β-cells. These mice exhibited abnormal islet morphology with reduced β-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.  相似文献   

18.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

19.
Heparan sulfate (HS) comprises a structurally diverse group of glycosaminoglycans present ubiquitously on cell surfaces and in the extracellular matrix. The spatially and temporally regulated expression of specific HS structures is essential for various developmental processes in the nervous system but their distributions in the mouse olfactory system have not been explored. Here, we examined the spatiotemporal distribution of particular HS species in the developing mouse olfactory system using three structure‐specific monoclonal antibodies (HepSS‐1, JM403 and NAH46). The major findings were as follows. (i) During olfactory bulb morphogenesis, the HepSS‐1 epitope was strongly expressed in anterior telencephalic cells and coexpressed with fibroblast growth factor receptor 1. (ii) In early postnatal glomeruli, the JM403 epitope was expressed at different levels among individual glomeruli. The expression pattern and levels of the JM403 epitope were both associated with those of ephrin‐A3. (iii) In the vomeronasal system, the JM403 epitope was expressed in all vomeronasal axons but became increasingly restricted to vomeronasal axons terminating in the anterior region of the accessory olfactory bulb by 3 weeks of age. Our results demonstrate that each HS epitope exhibits a unique expression pattern during the development of the mouse olfactory system. Thus, each HS epitope is closely associated with particular developmental processes of the olfactory system and might have a particular role in developmental events.  相似文献   

20.
Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts—soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non‐identical by a number of parameters, and that these differences have significant ramifications for their ligand‐binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS‐dependent factors between the ECM and the cell surface. J. Cell. Biochem. 108: 1132–1142, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号