首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Scutellaria lateriflora is well known for its medical applications because of the presence of flavanoids and alkaloids. The present study aimed to explore the molecular aspects and regulations of flavanoids. Five partial cDNAs encoding genes that are involved in the flavonoid biosynthetic pathway: phenylalanine ammonia lyase (SlPAL), cinnamate 4-hydroxylase (SlC4H), 4-coumaroyl CoA ligase (Sl4CL), chalcone synthase (SlCHS), and chalcone isomerase (SlCHI) were isolated from S. lateriflora. Organ expression analysis showed that these genes were expressed in all organs analyzed with the highest levels correlating with the richest accumulation of wogonin in the roots. Baicalin and baicalein differentially accumulated in S. lateriflora plants, with the highest concentration of baicalin and baicalein detected in the leaves and stems, respectively. Exogenous methyl jasmonate (MeJA) significantly enhanced the expression of SlCHS and SlCHI, and accumulation of baicalin (22.54 mg/g), baicalein (1.24 mg/g), and wogonin (5.39 mg/g) in S. lateriflora hairy roots. In addition, maximum production of baicalin, baicalein, and wogonin in hairy roots treated with MeJA was approximately 7.44-, 2.38-, and 2.12-fold, respectively. Light condition increased the expression level of SlCHS, the first committed step in flavonoid biosynthesis in hairy roots of S. lateriflora after 3 and 4 weeks of development compared to the dark condition. Dark-grown hairy roots contained a higher content of baicalin and baicalein than light-grown hairy roots, while light-grown hairy roots accumulated more wogonin than dark-grown hairy roots. These results may helpful for the metabolic engineering of flavonoids biosynthesis in S. lateriflora.  相似文献   

3.
4.
5.
Free radical scavenging and antioxidant activities of baicalein, baicalin, wogonin and wogonoside, the four major flavonoids in the radix of Scutellaria baicalensis Georgi, were examined in different systems. ESR results showed that baicalein and baicalin scavenged hydroxyl radical, DPPH radical and alkyl radical in a dose-dependent manner, while wogonin and wogonoside showed subtle or no effect on these radicals. Ten micromol/l of baicalein and baicalin effectively inhibited lipid peroxidation of rat brain cortex mitochondria induced by Fe(2+)-ascorbic acid, AAPH or NADPH, while wogonin and wogonoside showed significant effects only on NADPH-induced lipid peroxidation. In a study on cultured human neuroblastoma SH-SY5Y cells system, it was found that 10 micromol/l of baicalein and baicalin significantly protected cells against H(2)O(2)-induced injury. Baicalein was the most effective antioxidant among the four tested compounds in every system due to its o-tri-hydroxyl structure in the A ring. Compared with a well-known flavonoid, quercetin, the antioxidant activity of baicalein was lower in DPPH or AAPH system, but a little higher in those systems which might associate with iron ion. These results suggest that flavonoids in the radix of Scutellaria baicalensis with o-di-hydroxyl group in A the ring, such as baicalein and baicalin, could be good free radical scavengers and might be used to cure head injury associated with free radical assault.  相似文献   

6.
Baicalin, baicalein, and wogonin were accumulated in hairy roots derived from Scutellaria lateriflora and Scutellaria baicalensis. The levels of baicalein and baicalin were 6.8 and 5.0 times higher, respectively, in S. baicalensis than in S. lateriflora. A total of 47 metabolites were detected and identified in Scutellaria species by GC-TOF MS. The metabolites from the two species were subjected to principal component analysis (PCA) to evaluate differences. PCA fully distinguished between the two species. The results showed that individual phenolic acids and phenylalanine, precursors for the phenylpropanoid biosynthetic pathway, were higher in S. baicalensis than in S. lateriflora. This GC-TOF MS-based metabolic profiling approach was a viable alternative method to differentiate metabolic profiles between species.  相似文献   

7.
Based on our previous observation, the whole Scutellaria baicalensis extract (SbE) did not show significant breast cancer cell inhibitory effect. In this study, we isolated a baicalin-deprived-fraction (SbF1) of Scutellaria baicalensis, and baicalin-fraction (SbF3), and evaluated their anti-breast cancer properties using MCF-7 cells. The content of four flavonoids in extract/fractions were determined using high performance liquid chromatography. Analytical data showed that in SbF1, the major constituents are baicalein and wogonin, while SbF3 only contains baicalin. The antiproliferative effects of fractions and SbE were assayed using modified trichrome stain method. SbF1 showed significant antiproliferative effect. Treated with 100 μg/ml of SbF1 for 72 h inhibited MCF-7 cell growth by 81.6%, while in the same treatment concentration, SbF3 increased cell growth by 22.6%. SbF1 was recognized as an active fraction of SbE. The effects of four flavonoids in SbE, scutellarin, baicalin, baicalein and wogonin, were determined, and data showed that baicalein and wogonin significantly inhibited MCF-7 cell growth. In contrast, in certain concentrations, scutellarin and baicalin increased cancer cell growth. The effects of SbF1 on cell cycle and apoptosis were assayed using flow cytometry. SbF1 arrested MCF-7 cells in S- and G2/M-phases, and significantly increased induction of cell apoptosis. These combined phytochemical and biological data provide evidence for further chemopreventive studies of the baicalin-deprived SbE on breast cancer.  相似文献   

8.
St-20 and St-7 lines were isolated from the stem callus of Scutellaria baicalensis Georgi on indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid media, respectively. The flavonoid content of St-20 line was superior to that of St-7 line. The growth and flavonoid (baicalin, baicalein, wogonin and wogonin-7-0-glucuronide) content in St-20 line were best on Linsmaier-Skoog's basal medium containing 10-7 M–10-5 M kinetin. St-20 line showed the same flavonoid content and pattern as the root of parent plant after the culture period of 70 days.  相似文献   

9.
Scutellaria is a geographically widespread and diverse genus of the Lamiaceae family of herbaceous plants commonly known as skullcaps. Scutellaria is used widely as an ethnobotanical herb for the treatment of various ailments ranging from cancers, cirrhosis, jaundice, hepatitis, anxiety and nervous disorders. We used (1) reverse-phase liquid chromatography coupled to a diode array detector (LC-DAD), and (2) multiple reaction monitoring (MRM) using mass spectrometry (LC-MS/MS) to quantify the levels of acteoside, scutellarin, scetellarein, baicalin, baicalein, wogonin, wogonoside, apigenin, chrysin, and oroxylin A in aqueous methanolic extracts of roots, shoots and leaves of S. baicalensis, S. lateriflora, S. racemosa, S. tomentosa and S. wrightii. Our results indicate that both methods (LC-DAD and LC-MS/MS) were robust for the detection of the 10 analytes from Scutellaria extracts although greater sensitivities were achieved using LC-MS/MS in MRM mode. MRM enabled the detection of low levels of analytes which were otherwise undetected using LC-DAD. The baicalin content of S. wrightii roots were 5-fold higher than the commonly used S. baicalensis. Additionally, we also showed that leaves of both S. wrightii and S. tomentosa are good sources of scutellarin compared to S. baicalensis. Our data clearly demonstrated that previously uncharacterized species, S. wrightii and S. tomentosa are both good sources of flavonoids, particularly scutellarin, baicalin, wogonin and baicalein.  相似文献   

10.
11.
In response to mechanical damage, roots of Scutellaria baicalensis undergo cell death within 24 h. The flavone baicalein was identified as the factor regulating apoptosis in the damaged roots of S. baicalensis. Plant apoptosis is known to be triggered by oxidative damage of DNA through oxidative bursts, whereas baicalein causes apoptosis in Scutellaria cells by a copper-dependent oxidation of nuclear DNA without inducing an oxidative burst. S. baicalensis possesses an interesting system for quickly producing this apoptosis-inducing flavone in its cells. Intact Scutellaria cells contain little baicalein but store a large amount of baicalin (baicalein 7-O-β-D-glucuronide). Stress treatment of Scutellaria cells immediately initiates hydrolysis of baicalin by endogenous β-glucuronidase, and the resulting baicalein is immediately translocated to the nucleus, leading to apoptosis. Thus, S. baicalensis possesses a unique apoptosis-inducing system that is linked with metabolism of baicalin.  相似文献   

12.
The aim of this study was to investigate the effect of phenylalanine ammonia lyase (PAL) and isochorismate synthase (ICS) on free salicylic acid (FSA) or total salicylic acid (TSA) content, and the effect of endogenous SA on baicalin and baicalein accumulation in Scutellaria baicalensis Georgi, respectively. We amplified partial sequences of PAL and ICS genes in Scutellaria baicalensis Georgi and silenced the two genes with virus-induced gene silence (VIGS) technique, respectively. The influence of gene silence on FSA, TSA, baicalin, and baicalein accumulation in Scutellaria baicalensis Georgi were analyzed, and these parameters were also investigated under high temperature. Results indicated that PAL silence significantly affected the FSA, ICS affected TSA content. FSA significantly affected the baicalin, rather than baicalein content. Our results along with previous studies indicated PAL and ICS were different in the regulation of FSA or TSA synthesis, and FSA and TSA were different in the regulation of baicalin and baicalein synthesis in Scutellaria baicalensis Georgi.  相似文献   

13.
14.
Sophora japonica is a traditional Chinese medicinal ingredient that is widely used in the medicine, food, and industrial dye industries. Since flavonoids are the main components of S. japonica, studying the flavonoid composition and content of this plant is important. This study aimed to identify molecules involved in the flavonoid biosynthetic pathways in S. japonica. Deep sequencing was performed, and 85,877,352 clean reads were filtered from 86,095,152 raw reads. The clean reads were spliced to obtain 111,382 unigenes, which were then annotated with NR, GO, KEGG, eggNOG. Differential expression analysis and NR function prediction revealed 18 differentially expressed unigenes associated with 13 enzymes in flavonoid biosynthetic pathways. Our results reveal new insights on secondary metabolite biosynthesis‐related genes in S. japonica and enhance the potential applications of S. japonica in genetic engineering.  相似文献   

15.
Scutellaria baicalensis (S. baicalensis) and Scutellaria barbata (S. barbata) are common medicinal plants of the Lamiaceae family. Both produce specific flavonoid compounds, including baicalein, scutellarein, norwogonin, and wogonin, as well as their glycosides, which exhibit antioxidant and antitumor activities. Here, we report chromosome-level genome assemblies of S. baicalensis and S. barbata with quantitative chromosomal variation (2n = 18 and 2n = 26, respectively). The divergence of S. baicalensis and S. barbata occurred far earlier than previously reported, and a whole-genome duplication (WGD) event was identified. The insertion of long terminal repeat elements after speciation might be responsible for the observed chromosomal expansion and rearrangement. Comparative genome analysis of the congeneric species revealed the species-specific evolution of chrysin and apigenin biosynthetic genes, such as the S. baicalensis-specific tandem duplication of genes encoding phenylalanine ammonia lyase and chalcone synthase, and the S. barbata-specific duplication of genes encoding 4-CoA ligase. In addition, the paralogous duplication, colinearity, and expression diversity of CYP82D subfamily members revealed the functional divergence of genes encoding flavone hydroxylase between S. baicalensis and S. barbata. Analyzing these Scutellaria genomes reveals the common and species-specific evolution of flavone biosynthetic genes. Thus, these findings would facilitate the development of molecular breeding and studies of biosynthesis and regulation of bioactive compounds.  相似文献   

16.
Chronic mild unpredictable stress (CUMS) causes neurogenesis damage in the hippocampus and depressive-like behaviors such as cognitive impairment. Radix Scutellariae from the dry root of Scutellaria baicalensis Georgi, with the common name Baikal skullcap. In this study, we demonstrated that Radix Scutellariae (RS 500, 1000 mg/kg) notably improved the behavior of the rat, such as shortened escape latency in morris maze test, reduced immobility time in tail suspension test and in forced swimming test, as well as increased sucrose consumption in sucrose preference test. In addition, RS alleviated the damage CUMS-induced neurogenesis and the reduced levels of BrdU; DCX and NeuN, the neurons hallmark of hippocampus neurogenesis. Moreover, associated proteins in cAMP/PKA pathway were up-regulated after RS treatment. By HPLC analysis, we found that RS decoction contains four main components, including baicalin, baicalein, wogonoside and wogonin, respectively. In conclusion, RS could exert a natural antidepressant with improving depressive-like behavior via regulation of cAMP/PKA neurogenesis pathway.  相似文献   

17.
The composition and content of flavones were estimated in pRi T-DNA-transformed skullcap (Scutellaria baicalensis Georgi) roots obtained by the inoculation of axenically grown seedlings with a wild A4 strain of the soil bacterium Agrobacterium rhizogenes. It was elucidated by analytical and preparative HPLC of phenolic compounds in the extracts from the pRi T-DNA-transformed roots and also by ultraviolet spectroscopy and 1H and 13C NMR that cultured skullcap roots contained similar basic flavones as intact roots of this plant species, i.e., baicalein and wogonin and corresponding glucuronides, baicalin and wogonoside. The content of these flavones in cultured roots was threefold lower than in the roots of intact five-year-old plants. When skullcap roots were cultured on B5 or Murashige and Skoog medium, the ratios between major flavones changed but their total content remained unchanged. The treatment of three-week-old cultured roots with methyl ether of jasmonic acid (MeJa) doubled the total concentration of major flavones in roots; the content of aglycons, baicalein and wogonin, increased to a greater degree, e.g., by 2.3 and 3.3 times, respectively. The induction of flavone production by elicitors indicates that flavones behave as phytoanticipins because major flavones of skullcap manifest a distinct antimicrobial activity. The results of the short-term treatment of skullcap roots with MeJa show that stress biotic factors can considerably increase the content of physiologically active flavones.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 90–96.Original Russian Text Copyright © 2005 by Kuzovkina, Guseva, Kovács, Szöke, Vdovitchenko.  相似文献   

18.
A root culture of skullcap (Scutellaria baicalensisGeorgi) transformed with pRi T-DNA was initiated by the inoculation of sterile seedlings with Agrobacterium rhizogenes(wild-type strain A-4). The flavonoid concentration in cultured roots comprised 5% of the root dry weight and was maintained essentially constant during a subculture. For four weeks of culturing, the weight of the roots increased by 20–30 times; when the roots were cultured for a longer time and with periodic enrichment of the nutrient medium, their weight increased 50-fold. Skullcap roots were shown to synthesize flavones characteristic of intact roots (wogonin, baicalein, and baicalin). The addition of 0.01–1 mM L-phenylalanine (a precursor of flavonoids) to the nutrient medium affected neither root growth, nor their flavonoid concentration. Root elicitation with 100 M methyl jasmonate for 72 h increased the flavonoid content per flask and per root dry weight by 1.8 and 2.3 times, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号