首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.  相似文献   

2.
古田山常绿阔叶林的群落组成、结构及其维持机制已有许多研究, 但该地区亚热带常绿阔叶林生物多样性空间变异特征还缺乏认识。本文以古田山24 ha大样地(划分为24个1 ha小样地)为基础, 具体分析了α多样性和β多样性在1 ha尺度上的空间变异特征。结果表明: (1)群落第一、二优势物种在各小样地之间变化不大, 但第三优势种变化较大; (2) α多样性变化中, 样地间木本植物个体数量变异最大, 物种丰富度其次, Pielou均匀度指数变异性最小; (3)物种丰富度与植株个体数量、Pielou均匀度指数没有显著的相关性, 与Shannon-Wiener指数呈显著正相关; Shannon-Wiener指数与Pielou均匀度指数呈显著正相关; (4)相邻样地间物种替代速率空间变异较大, 与物种丰富度的空间变化格局有明显差异。这些结果说明尺度对认识群落结构、探讨群落维持机制有重要作用; 由于森林群落是多尺度生态过程作用的结果, 大尺度样地可能有利于更好地揭示森林群落维持机制。  相似文献   

3.
Coastal ecosystems are often stressed by non-point source and cumulative effects that can lead to local-scale community homogenisation and a concomitant loss of large-scale ecological connectivity. Here we investigate the use of β-diversity as a measure of both community heterogeneity and ecological connectivity. To understand the consequences of different environmental scenarios on heterogeneity and connectivity, it is necessary to understand the scale at which different environmental factors affect β-diversity. We sampled macrofauna from intertidal sites in nine estuaries from New Zealand’s North Island that represented different degrees of stress derived from land-use. We used multiple regression models to identify relationships between β-diversity and local sediment variables, factors related to the estuarine and catchment hydrodynamics and morphology and land-based stressors. At local scales, we found higher β-diversity at sites with a relatively high total richness. At larger scales, β-diversity was positively related to γ-diversity, suggesting that a large regional species pool was linked with large-scale heterogeneity in these systems. Local environmental heterogeneity influenced β-diversity at both local and regional scales, although variables at the estuarine and catchment scales were both needed to explain large scale connectivity. The estuaries expected a priori to be the most stressed exhibited higher variance in community dissimilarity between sites and connectivity to the estuary species pool. This suggests that connectivity and heterogeneity metrics could be used to generate early warning signals of cumulative stress.  相似文献   

4.
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests.  相似文献   

5.
The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity.  相似文献   

6.
Ecologists have developed an abundance of conceptions and mathematical expressions to define β-diversity, the link between local (α) and regional-scale (γ) richness, in order to characterize patterns of biodiversity along ecological (i.e., spatial and environmental) gradients. These patterns are often realized by regression of β-diversity indices against one or more ecological gradients. This practice, however, is subject to two shortcomings that can undermine the validity of the biodiversity patterns. First, many β-diversity indices are constrained to range between fixed lower and upper limits. As such, regression analysis of β-diversity indices against ecological gradients can result in regression curves that extend beyond these mathematical constraints, thus creating an interpretational dilemma. Second, despite being a function of the same measured α- and γ-diversity, the resultant biodiversity pattern depends on the choice of β-diversity index. We propose a simple logistic transformation that rids beta-diversity indices of their mathematical constraints, thus eliminating the possibility of an uninterpretable regression curve. Moreover, this transformation results in identical biodiversity patterns for three commonly used classical beta-diversity indices. As a result, this transformation eliminates the difficulties of both shortcomings, while allowing the researcher to use whichever beta-diversity index deemed most appropriate. We believe this method can help unify the study of biodiversity patterns along ecological gradients.  相似文献   

7.
Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity.  相似文献   

8.
The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.  相似文献   

9.
Madagascar harbors four large adaptive radiations of endemic terrestrial mammals: lemurs, tenrecs, carnivorans, and rodents. These rank among the most spectacular examples of evolutionary diversification, but their monophyly and origins are debated. The lack of Tertiary fossils from Madagascar leaves molecular studies as most promising to solve these controversies. We provide a simultaneous reconstruction of phylogeny and age of the four radiations based on a 3.5-kb data set from three nuclear genes (ADRA2B, vWF, and AR). The analysis supports each as a monophyletic clade, sister to African taxa, and thereby identifies four events of colonization out of Africa. To infer the time windows for colonization, we take into account both the divergence from the closest non-insular sister group and the initial intra-insular radiation, which is a novel but conservative approach in studies of the colonization history of Madagascar. We estimate that lemurs colonized Madagascar between 60 million years ago (Mya) (split from lorises) and 50 Mya (lemur radiation) (70-41 Mya taking 95% credibility intervals into account), tenrecs between 42 and 25 Mya (50-20 Mya), carnivorans between 26 and 19 Mya (33-14 Mya), and rodents between 24 and 20 Mya (30-15 Mya). These datings suggest at least two asynchronous colonization events: by lemurs in the Late Cretaceous-Middle Eocene, and by carnivorans and rodents in the Early Oligocene-Early Miocene. The colonization by tenrecs may have taken place simultaneously with either of these two events, or in a third event in the Late Eocene-Oligocene. Colonization by at least lemurs, rodents, and carnivorans appears to have occurred by overseas rafting rather than via a land bridge hypothesized to have existed between 45 and 26 Mya, but the second scenario cannot be ruled out if credibility intervals are taken into account.  相似文献   

10.
High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in β-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100''s of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and β–diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on β-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.  相似文献   

11.
We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.  相似文献   

12.
Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.  相似文献   

13.
物种多样性的空间分布格局一直是生态学和生物地理学研究的一个热点问题。山地生态系统的生境异质性和物种多样性高, 适合研究物种多样性空间分布格局及其相关机制。2016年11月至2017年11月, 本研究选取秦岭南坡陕西洋县辖区作为研究区域, 采用样线法、红外相机法和笼捕/夹捕法, 系统分析了8目21科48种哺乳动物物种多样性的空间分布格局。研究结果发现秦岭南坡洋县辖区哺乳动物物种丰富度的空间分布格局大致是中南部低, 北部和东部高; 物种多样性指数大致是中南部和北部低, 东部高。啮齿类动物和非啮齿类动物的空间分布格局存在差异。哺乳动物物种丰富度和多样性指数的垂直分布格局都符合中峰模式, 但啮齿类动物和非啮齿类动物间存在差异。最优线性模型结果表明, 研究地区哺乳动物物种多样性的空间分布格局受到多种环境因素的共同影响。其中, 年均温与物种多样性的相关性最强, 在6个最优线性模型中贡献都是最大。综上, 秦岭南坡洋县辖区中高海拔区域的物种多样性较高, 应加强对中高海拔地区的保护, 以维系该区域较高的生物多样性。  相似文献   

14.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.  相似文献   

15.
Understanding the mechanisms maintaining local species richness is a major topic in tropical ecology. In ecological communities of Madagascar, primates represent a major part of mammalian diversity and, thus, are a suitable taxon to study these mechanisms. Previous research suggested that ecological niche differentiation facilitates the coexistence of lemurs. However, detailed data on all species making up diverse local primate assemblages is rarely available, hampering community‐wide tests of niche differentiation among Malagasy mammals. Here, we took an indirect approach and used stable isotopes as long‐term indicators of individuals' diets to answer the question of whether trophic patterns and food‐related mechanisms stabilize coexistence in a species‐rich lemur community. We analyzed stable carbon and nitrogen isotopes in hair collected from eight syntopic lemurs in Kirindy Forest. We found that lemur species were well separated into trophic niches and ranged over two trophic levels. Furthermore, species were densely packed in isotopic space suggesting that past competitive interactions between species are a major structuring force of this dry forest lemur community. Results of other comparative studies on primates and our findings underline that—in contrast to communities worldwide—the structure and composition of lemur communities follow predictions of ecological niche theory. Patterns of competitive interactions might be more clearly revealed in Malagasy primate communities than elsewhere because lemurs represent a large fraction of ecologically interacting species in these communities. The pronounced trophic niche differentiation among lemurs is most likely due to intense competition in the past as is characteristic for adaptive radiations. Am J Phys Anthropol 153:249–259, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Despite an increasing recognition of the ecosystem services provided by mangroves, we know little about their role in maintaining terrestrial biodiversity, including primates. Madagascar’s lemurs are a top global conservation priority, with 94 % of species threatened with extinction, but records of their occurrence in mangroves are scarce. I used a mixed-methods approach to collect published and unpublished observations of lemurs in mangroves: I carried out a systematic literature search and supplemented this with a targeted information request to 1243 researchers, conservation and tourism professionals, and others who may have visited mangroves in Madagascar. I found references to, or observations of, at least 23 species in 5 families using mangroves, representing >20% of lemur species and >50% of species whose distributions include mangrove areas. Lemurs used mangroves for foraging, sleeping, and traveling between terrestrial forest patches, and some were observed as much as 3 km from the nearest permanently dry land. However, most records were anecdotal and thus tell us little about lemur ecology in this habitat. Mangroves are more widely used by lemurs than has previously been recognized and merit greater attention from primate researchers and conservationists in Madagascar.  相似文献   

17.
Species loss and invasion of exotic species are two components of global biodiversity change that are expected to influence ecosystem functioning. Yet how they interact in natural settings remains unclear. Experiments have revealed two major mechanisms for the observed increase in primary productivity with plant species richness. Plant productivity may rise with species richness due to the increased amount of resources used by more diverse communities (niche complementarity) or through the increased probability of including a highly productive, dominant species in the community (sampling effect). Current evidence suggests that niche complementarity is the most relevant mechanism, whereas the sampling effect would only play a minor and transient role in natural systems. In turn, exotic species can invade by using untapped resources or because they possess a fitness advantage over resident species allowing them to dominate the community. We argue that the sampling effect can be a significant biodiversity mechanism in ecosystems invaded by dominant exotic species, and that the effect can be persistent even after decades of succession. We illustrate this idea by analyzing tree species richness–productivity relationships in a subtropical montane forest (NW Argentina) heavily invaded by Ligustrum lucidum, an evergreen tree from Asia. We found that the forest biomass increased along a natural gradient of tree species richness whether invaded by L. lucidum or not. Consistent with the sampling effect, L. lucidum invasion tripled total tree biomass irrespective of species richness, and monocultures of L. lucidum were more productive than any of the most species‐rich, uninvaded communities. Hence, the sampling effect may not be restricted to randomly assembled, synthetic communities. We emphasize that studying invaded ecosystems may provide novel insights on the mechanisms underlying the effect of biodiversity on ecosystem function.  相似文献   

18.
The phylogenetic diversity of extant lemurs represents one of the most important but least studied aspects of the conservation biology of primates. The phylogenetic diversity of a species is inversely proportional to the relative number and closeness of its phylogenetic relatives. Phylogenetic diversity can then be used to determine conservation priorities for specific biogeographic regions. Although Malagasy strepsirhines represent the highest phylogenetic diversity among primates at the global level, there are few phylogenetic data on species-specific and regional conservation plans for lemurs in Madagascar. Therefore, in this paper the following questions are addressed for extant lemurs: 1) how does the measure of taxonomic uniqueness used by Mittermeier et al. (1992 Lemurs of Madagascar; Gland, Switzerland: IUCN) equate with an index of phylogenetic diversity, 2) what are the regional conservation priorities based on analyses of phylogenetic diversity in extant lemurs, and 3) what conservation recommendations can be made based on analyses of phylogenetic diversity in lemurs? Taxonomic endemicity standardized weight (TESW) indices of phylogenetic diversity were used to determine the evolutionary component of biodiversity and to prioritize regions for conserving lemur taxa. TESW refers to the standardization of phylogenetic diversity indices for widespread taxa and endemicity of species. The phylogenetic data came from recent genetic studies of Malagasy strepsirhines at the species level. Lemur species were assigned as being either present or absent in six biogeographic regions. TESW indices were combined with data on lemur complementarity and protected areas to assign conservation priorities at the regional level. Although there were no overall differences between taxonomic ranks and phylogenetic rankings, there were significant differences for the top-ranked taxa. The phylogenetic component of lemur diversity is greatest for Daubentonia madagascariensis, Allocebus trichotis, Lepilemur septentrionalis, Indri indri, and Mirza coquereli. Regional conservation priorities are highest for lemurs that range into northeast humid forests and western dry forests. Expansion of existing protected areas in these regions may provide the most rapid method for preserving lemurs. In the long term, new protected areas must be created because there are lemur species that: 1) are not found in existing protected areas, 2) exist only in one or two protected areas, and 3) are still being discovered outside the current network of protected areas. Data on the population dynamics and feeding ecology of phylogenetically important species are needed to ensure that protected areas adequately conserve lemur populations in Madagascar.  相似文献   

19.
We present here a study of European Neogene primate occurrences in the context of changing humidity. We studied the differences of primate localities versus non-primate localities by using the mammal communities and the ecomorphological data of the taxa present in the communities. The distribution of primates is influenced by humidity changes during the whole Neogene, and the results suggest that the primates track the changes in humidity through time. The exception to this is the Superfamily Cercopithecoidea which shows a wider range of choices in habitats. All primate localities seem to differ from non-primate localities in that the mammal community structure is more closed habitat oriented, while in non-primate localities the community structure changes towards open-habitat oriented in the late Neogene. The differences in primate and non-primate localities are stronger during the times of deep environmental change, when primates are found in their preferred habitats and non-primate localities have faunas better able to adapt to changing conditions.  相似文献   

20.
During their 120 to 165 million years of isolation, the flora and fauna of Madagascar evolved, to a large extent, independently of the African mainland.1 In contrast to other oceanic islands, Madagascar is large enough to house the major components of tropical ecosystems, allowing tests of evolutionary hypotheses on the level of complete communities. Taking lemurs, the primates of Madagascar, as an example, evolutionary hypotheses correctly predict the organization of their community structure with respect to ecological correlates. Lemur social systems and their morphological correlates, on the other hand, deviate in some respects from those of other primates. Apparently, lemur social systems are influenced by several selection pressures that are weak or rare in other primates. These include variable activity patterns and avoidance of infanticide. The interspecific variation in lemur social systems therefore offers a unique opportunity for a comprehensive study of the determinants of primate social systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号