首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ascitic lymphosarcoma (LS-A) of Swiss mice that regressed spontaneously on subcutaneous (s.c.) transplantation was investigated for the mechanism of its progressive growth and host mortality on intraperitoneal (i.p.) transplantation. In vitro studies indicated significant inhibition of LS-A proliferation seeded at higher cell density (>104/ml). Culture supernatants of LS-A caused bi-modal growth effects, the early supernatants (24 h) caused stimulation and the late (72 h) supernatants inhibited LS-A proliferation. The 72-h supernatants also suppressed T and B cell response to mitogens in a dose-dependent manner. Pan anti-transforming growth factor- antibody abrogated the inhibitory effects of supernatants. The supernatants contained both latent as well as bio-active form of transforming growth factor-1 (TGF-1) as determined by ELISA. Mice bearing i.p. ascites tumor had elevated serum TGF-1, hemoglobulinemia, splenic lymphopenia, impaired response of the T cells to mitogen and reduced expression of transferrin receptor (CD71) on the bone marrow cells. However, mice which rejected s.c. transplants, did not show significant changes in these parameters. Our studies indicated profound influence of site of tumor growth on tumor progression and host immune system mediated by tumor-derived TGF-1. It is possible that human tumors which secrete TGF-1 may exhibit similar patho-physiological effects in the host depending on the anatomical site of the tumor.  相似文献   

2.
Human heregulins are neuregulin-1 type I polypeptides that act as ligands of the ErbB family of receptor tyrosine kinases. These peptides play an essential role in the development of the cardiovascular system, including angiogenesis and compensation of cardiac function. Both heregulins and ErbB receptors are expressed at high levels in various types of vascular cells. The results of cell culture, animal, and clinical experiments have shown heregulin-β(1) to be a promising drug candidate for prevention of atherosclerosis. Various mechanisms have been suggested to be involved in this process, such as suppression of macrophage foam cell formation and vascular smooth muscle cell proliferation. Heregulin-β(1) retards pro-inflammatory responses by attenuating the expression of interleukin-1β, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinase-9, and cyclooxygenase-2 in monocytes. The peptide also has anti-oxidant and anti-apoptotic properties, and activates endothelial nitric oxide synthase in cardiomyocytes. Chronic infusion of heregulin-β(1) into apolipoprotein E-knockout mice suppresses the development of atherosclerotic lesions. In rat balloon injury models, heregulin-β(1) injection attenuates neointimal formation in the carotid artery. Clinical studies have shown that markedly reduced levels of heregulin-β(1) in the arterial wall and blood are closely associated with the progression of human coronary atherosclerotic lesions in patients with coronary artery disease. Therefore, these findings provide insight into the potential use of heregulin-β(1) as an extended therapeutic window for combating atherosclerosis and restenosis after coronary angioplasty.  相似文献   

3.
4.
Sickle cell disease (SCD) represents a chronic inflammatory condition with complications triggered by the polymerization of hemoglobin S (Hb S), resulting in a series of cellular interactions mediated by inflammatory cytokines, as the transforming growth factor beta (TGF-β), which plays an important role in inflammation resolution. This study assessed the relation between SCD inflammation and the plasma concentration of TGF-β1, and also checked the influence of the presence of −509C/T polymorphism in TGFB1 gene on TGF-β1 plasma values. The plasma levels of TGF-β1 were quantified by ELISA in 115 patients with SCD (genotypes SS, SD-Los Angeles, Sβ-thalassemia and SC) and in 58 individuals with no hemoglobinopathies (Hb AA), as the control group. The −509C/T polymorphism in TGFB1 gene was screened by PCR-RFLP. The correlation between TGF-β1 plasma levels and the inflammation was based on its association with the count of platelets, total white blood cells (WBC) and neutrophils in the peripheral blood. Patients with SCD showed plasma levels of TGF-β1 higher than the control group, especially the Hb SS genotype, followed by the group with Hb SD. Polymorphism investigation showed no interference in the values obtained for the cytokine in the groups evaluated. All SCD groups showed TGF-β1 levels positively correlated to the platelets and WBC counts. The original data obtained in this study for SCD support the involvement of TGF-β1 in regulating of the inflammatory response and suggest that this marker possibly may become a potential therapeutic target in the treatment of the disease.  相似文献   

5.
We have demonstrated that gene polymorphisms within the N-terminal leader sequence of TGF-β1 contribute to the outcome of hepatic fibrogenesis. In addition, the polymorphism at codon 25 affects TGF-β1 production in peripheral blood leukocytes. Therefore, it is general assumed that these polymorphisms influence cellular secretion of this cytokine. In the present study, we analysed if this widespread hypothesis is true. We cloned FLAG-tagged CMV-driven human full-length TGF-β1 expression constructs of the different allelic variations (i.e. 10Leu/25Arg, 10Pro/25Pro and 10Pro/25Arg) and transfected them into the immortal hepatic stellate cell line LX-2 and Chinese Hamster Ovary cells. Surprisingly, the allelic variants carrying a proline either in codon 10 or 25 showed overall reduced expression as assessed by Western blot and quantitative ELISA. We conclude that the allelic variations within the signal sequence influence the expression and not secretion of TGF-β1. Detailed RNA structure prediction analysis further suggests that the individual variants form different secondary structures.  相似文献   

6.
7.
The epithelial-to-mesenchymal transition (EMT) plays crucial roles in embryonic development, wound healing, tissue repair, and cancer progression. Results of this study show how transforming growth factor β1 (TGF-β1) down-regulates expression of N-acetylglucosaminyltransferase III (GnT-III) during EMT-like changes. Treatment with TGF-β1 resulted in a decrease in E-cadherin expression and GnT-III expression, as well as its product, the bisected N-glycans, which was confirmed by erythro-agglutinating phytohemagglutinin lectin blot and HPLC analysis in human MCF-10A and mouse GE11 cells. In contrast with GnT-III, the expression of N-acetylglucosaminyltransferase V was slightly enhanced by TGF-β1 treatment. Changes in the N-glycan patterns on α3β1 integrin, one of the target proteins for GnT-III, were also confirmed by lectin blot analysis. To understand the roles of GnT-III expression in EMT-like changes, the MCF-10A cell was stably transfected with GnT-III. It is of particular interest that overexpression of GnT-III influenced EMT-like changes induced by TGF-β1, which was confirmed by cell morphological changes of phase contrast, immunochemical staining patterns of E-cadherin, and actin. In addition, GnT-III modified E-cadherin, which served to prolong E-cadherin turnover on the cell surface examined by biotinylation and pulse-chase experiments. GnT-III expression consistently inhibited β-catenin translocation from cell-cell contact into the cytoplasm and nucleus. Furthermore, the transwell assay showed that GnT-III expression suppressed TGF-β1-induced cell motility. Taken together, these observations are the first to clearly demonstrate that GnT-III affects cell properties, which in turn influence EMT-like changes, and to explain a molecular mechanism for the inhibitory effects of GnT-III on cancer metastasis.  相似文献   

8.
Glycosylphosphatidylinositol (GPI) was previously identified in rabbit articular chondrocytes as being a precursor of inositolphosphate glycan (IPG), released upon (Transforming Growth Factor-) (TGF-) exposure, and capable of mimicking the proliferative effects of the growth factor. Here, using mink lung epithelial cells (CCL 64), which are known to be growth-inhibited by TGF-, we studied the potential role of GPI-derived molecules in the antiproliferative effect of TGF-1. We first identified an endogenous pool of GPI material and three different anionic forms of IPG in epithelial cells pre-labeled with [3H] glucosamine. Shortly (8 min) after TGF-1 addition, the cells responded by a rapid and transient hydrolysis of GPI, accompanied by the release of the most anionic form of IPG. This TGF--released IPG, after partial purification, was shown to decrease the proliferation of CCL 64 cells. Moreover, anti-IPG antibodies reduced the effects of TGF- and blocked the effects of partially purified IPG. These data strongly suggest that GPI hydrolysis may be an early step of the TGF- signalling pathway involved in growth inhibition of epithelial cells.  相似文献   

9.
Colon adenocarcinoma is one of the most common fatal malignancies in Western countries. Progression of this cancer is dependent on tumor microenvironmental signaling molecules such as transforming growth factor-β (TGF-β) or acetylcholine (ACh). The present study was conducted to assess the influence of recombinant human transforming growth factor (rhTGF)-β1 or ACh on nitric oxide (NO) and interleukin-1β (IL-1β) secretion by three human colon adenocarcinoma cell lines: HT29, LS180, and SW948, derived from different grade tumors (Duke’s stage). The cells were cultured in 2D and 3D (spheroids) conditions. Colon carcinoma cells exhibited different sensitivities to rhTGF-β1 or ACh dependent on the tumor grade and the culture model. ACh exhibited significant inhibitory effects towards NO, endothelial nitric oxide synthase (eNOS), and IL-1β secretion especially by tumor cells derived form Duke’s C stage of colon carcinoma. rhTGF-β1 also decreased NO, IL-1β, and eNOS expression, but its effect was lower than that observed after the administration of ACh. The inhibition of NO and IL-1β production was more striking in 3D tumor spheroids than in 2D culture monolayers. Taken together, the TGF-β1–ACh axis may regulate colon carcinoma progression and metastasis by altering NO secretion and influence inflammatory responses by modulating IL-1β production.  相似文献   

10.

Background

Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells.

Methodology/Principal Findings

Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T) were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP), respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC.

Conclusions

Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.  相似文献   

11.
TGF-β1 can regulate osteoblast differentiation not only positively but also negatively. However, the mechanisms of negative regulation are not well understood. We previously established the reproducible model for studying the suppression of osteoblast differentiation by repeated or high dose treatment with TGF-β1, although single low dose TGF-β1 strongly induced osteoblast differentiation. The mRNA expression and protein level of insulin-like growth factor-1 (IGF-1) were remarkably decreased by repeated TGF-β1 administration in human periodontal ligament cells, human mesenchymal stem cells, and murine preosteoblast MC3T3-E1 cells. Repeated TGF-β1 administration subsequently decreased alkaline phosphatase (ALP) activity and mRNA expression of osteoblast differentiation marker genes, such as RUNX2, ALP, and bone sialoprotein (BSP). Additionally, repeated administration significantly reduced the downstream signaling pathway of IGF-1, such as Akt phosphorylation in these cells. Surprisingly, exogenous and overexpressed IGF-1 recovered ALP activity and mRNA expression of osteoblast differentiation marker genes even with repeated TGF-β1 administration. These facts indicate that the key mechanism of inhibition of osteoblast differentiation induced by repeated TGF-β1 treatment is simply due to the down-regulation of IGF-1 expression. Inhibition of IGF-1 signaling using small interfering RNA (siRNA) against insulin receptor substrate-1 (IRS-1) suppressed mRNA expression of RUNX2, ALP, BSP, and IGF-1 even with single TGF-β1 administration. This study showed that persistence of TGF-β1 inhibited osteoblast differentiation via suppression of IGF-1 expression and subsequent down-regulation of the PI3K/Akt pathway. We think this fact could open the way to use IGF-1 as a treatment tool for bone regeneration in prolonged inflammatory disease.  相似文献   

12.
13.
Levels of the cytokines transforming growth factor (TGF)-β1, interleukin (IL)-10 and IL-6 in the boar seminal plasma (SP) as well as TGF-β1 level in different fractions of ejaculate were studied. These cytokines was chosen because of their expected effect on tissue immune response, i.e. suppressive (TGF-β1 and IL-10) and pro-inflammatory (IL-6). Three whole ejaculates from five boars A-E, (n=15) were sampled weekly to evaluate the levels of seminal plasma TGF-β1, IL-10 and IL-6 as well as their fluctuations over time. The effect of different storage temperatures, -20°C or -80°C, on the level of seminal plasma TGF β1 was also tested (three boars, two fractions in one ejaculate). In addition, in 4 different fractions of ejaculates: the pre-sperm-rich (Pre-SRF), first 10 ml of sperm-rich (10SRF), the rest of the sperm-rich fraction (Rest-SRF) and the rest of the ejaculate (RE) fraction, were collected from three boars (A-C) on four different occasions for TGF-β1 evaluation. In the whole ejaculates (n=15), a wide range in the concentration of the cytokines TGF-β1 (20.4 - 766.5 pg/mL) and IL-10, (73.7 - 837.3 pg/mL), was found. For IL-6, the concentration was low (range 11.5 - 30.9 pg/ml) and only detected in four out of 15 collections (from two boars). The mean levels of TGF-β1 and IL-10 between individual boars varied but were not statistical different. The level of TGF-β1 in Pre-SRF, Rest-SRF and RE fractions was significantly lower in boar A than the other boars. A significantly higher concentration of TGF-β1 was found in the 10SRF than in the other fractions. Different storage temperatures (-20°C or -80°C) did not affect the seminal plasma TGF-β1 level after one year of storage. To conclude: Boar seminal plasma contained TGF- β1 and IL-10 but with high individual variation. IL-6 was low or undetectable. The TGF- β1 level was highest in the first 10 mL of the sperm-rich fraction of the ejaculate. Further studies are needed on the role of different levels of cytokine in boar semen on porcine female reproductive tissue, especially for TGF- β1.  相似文献   

14.
《Research in virology》1991,142(2-3):239-242
TGF-β at physiological concentrations, when added to monocyte-derived macrophages following HIV1 infection, has an enhancing effect upon the rate of virus production. This effect is observed with the monocytotropic isolate ADA, as well as with HIV1 IIIB, which poorly replicates in macrophages.  相似文献   

15.
The effects of hepatocyte growth factor (HGF) and transforming growth factor-beta (TGF-β) on two morphological states of hepatocytes in monolayer and spheroid cultures, were examined in terms of their mitogenic ability and albumin expression. In monolayer culture on collagen-coated dishes, the increase in DNA content in the presence of HGF was observed when HGF was added within two days of cell isolation, whereas no increase in DNA was observed when HGF was added four days of cell isolation. DNA content increased even after four days, when HGF was added intermittently. On the other hand, spheroid formation was promoted on Primaria® dishes in HGF-free culture, whereas it was inhibited following the addition of HGF. No increase in DNA content was observed in spheroid cultures even in the presence of HGF throughout the culture period. The albumin production ability rapidly decreased in monolayer culture, but the decline was attenuated following the addition of HGF during the course of culture. A high albumin production ability was maintained independent of HGF supplementation in spheroid culture. Both DNA content and albumin production decreased rapidly following the addition of TGF-β1 in monolayer culture, and this decline was also attenuated following the addition of HGF to the medium.  相似文献   

16.
Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-β1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague–Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-β1 siRNA 0.125 mg/kg treatment group, TGF-β1 siRNA 0.25 mg/kg treatment group and TGF-β1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin–Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-β1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-β1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-β1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-β1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-β1 siRNA negative control group and the TGF-β1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-β1, type I collagen and type III collagen (P < 0.01). Conclusions: Using siRNA to target TGF-β1 can inhibit the expression of TGF-β1 and attenuate rat hepatic fibrosis induced by a high-fat diet and CCL4. A possible mechanism is through the down-regulation of TGF-β1 expression, which could inhibit HSC activation, as well as the proliferation and collagen production of collagen reducing, so that collagen deposition in the liver is reduced.  相似文献   

17.
Alzheimer’s disease (AD) is a neurodegenerative disorder that affects about 35 million people worldwide. Current drugs for AD only treat the symptoms and do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Identification of the molecular determinants underlying Aβ-induced neurodegeneration is an essential step for the development of disease-modifying drugs. Recently, an impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease. TGF-β1 is a neurotrophic factor responsible for the initiation and maintenance of neuronal differentiation and synaptic plasticity. The deficiency of TGF-β1 signaling is associated with Aβ pathology and neurofibrillary tangle formation in AD animal models. Reduced TGF-β1 signaling seems to contribute both to microglial activation and to ectopic cell-cycle re-activation in neurons, two events that contribute to neurodegeneration in the AD brain. The neuroprotective features of TGF-β1 indicate the advantage of rescuing TGF-β1 signaling as a means to slow down the neurodegenerative process in AD.  相似文献   

18.
Fibroblast contraction of collagen gels is regarded as a model of wound contraction. Transforming growth factor (TGF)-beta added to such gels can augment contraction consistent with its suggested role as a mediator of fibrotic repair. Since fibroblasts isolated from fibrotic tissues have been suggested to express a "fibrotic phenotype," we hypothesized that TGF-beta exposure may lead to a persistent increase in fibroblasts' contractility. To evaluate this question, confluent human fetal lung fibroblasts were treated with serum-free Dulbecco modified Eagle medium (DMEM), with or without 100 pM [corrected] TGF-beta1, TGF-beta2, or TGF-beta3 for 48 h. Fibroblasts were then trypsinized and cast into gels composed of native type I collagen isolated from rat tail tendons. After 20 min for gelation, the gels were released and maintained in serum-free DMEM. TGF-beta-pretreated fibroblasts caused significantly more rapid gel contraction (52.5+/-0.6, 50.9+/-0.2, and 50.3+/-0.5% by TGF-beta1, -beta2, and -beta3 pretreated fibroblasts, respectively) than control fibroblasts (74.0+/-0.3%, P < 0.01). This effect is concentration dependent (50-200 nM), and all three isoforms had equal activity. The effect of TGF-beta1, however, persisted for only a short period of time following the removal of TGF-beta, and was lost with sequential passage. These observations suggest that the persistent increase in collagen-gel contractility, mediated by fibroblasts from fibrotic tissues, would not appear to be solely due to previous exposure of these cells to TGF-beta.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号