首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2′-O-methyladenosine 3′,5′-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.  相似文献   

3.
Objectives:S100-β has been identified as a sensitive biomarker in central nervous system injuries. However, the functions and mechanisms of S100-β are unknown in spinal cord injury.Methods:Spinal cord injury (SCI) mouse model was generated by surgical operation, microglia activation model was established by inducing BV-2 cells with LPS. The SCI model was evaluated by Basso-Beattie-Bresnahan (BBB) behavioral score, HE staining, and Nissl staining. The expression level of S100-β was detected by qRT-PCR, western blot, and immunofluorescence. qRT-PCR and western blot were used to detect the expression of iNOS and CD16. Pro-inflammatory cytokines TNF-α and IL-1β levels were detected by qRT-PCR and ELISA.Results:The expression of IL-1β, TNF-α, iNOS, and CD16 increased at 3rd day after SCI. In BV2 microglia, LPS treatment promoted the expression of S100-β, IL-1β, TNF-α, iNOS, and CD16. Knockdown of S100-β reduced the expression of iNOS stimulated by LPS. Over-expression of S100-β increased IL-1β and TNF-α, and S100-β inhibition suppressed IL-1β and TNF-α. In SCI mice, knockdown of S100-β attenuated the spinal cord injury and inhibited the expression of iNOS, IL-1β, and TNF-α.Conclusions:Down-regulation of S100-β could inhibit the pathogenesis of SCI and inhibit the activation of M1 macrophages. S100-β may be a useful diagnostic biomarker or therapeutic target for SCI.  相似文献   

4.
5.
6.
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.  相似文献   

7.
The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level.  相似文献   

8.
9.
We recently discovered that the antidepressant sertraline is an effective inhibitor of hippocampus presynaptic Na+ channel permeability in vitro and of tonic-clonic seizures in animals in vivo. Several studies indicate that the pro-inflammatory cytokines in the central nervous system are increased in epilepsy and depression. On the other hand inhibition of Na+ channels has been shown to decrease pro-inflammatory cytokines in microglia. Therefore, the possibility that sertraline could overcome the rise in pro-inflammatory cytokine expression induced by seizures has been investigated. For this purpose, IL-1β and TNF-α mRNA expression was determined by RT-PCR in the hippocampus of rats administered once, or for seven consecutive days with sertraline at a low dose (0.75 mg/kg). The effect of sertraline at doses within the range of 0.75 to 25 mg/kg on the increase in IL-1β and TNF-α mRNA expression accompanying generalized tonic-clonic seizures, and increase in the pro-inflammatory cytokines expression induced by lipopolysaccharide was also investigated. We found that under basal conditions, a single 0.75 mg/kg sertraline dose decreased IL-1β mRNA expression, and also TNF-α expression after repeated doses. The increase in IL-1β and TNF-α expression induced by the convulsive agents and by the inoculation of lipopolysaccharide in the hippocampus was markedly reduced by sertraline also. Present results indicate that a reduction of brain inflammatory processes may contribute to the anti-seizure sertraline action, and that sertraline can be safely and successfully used at low doses to treat depression in epileptic patients.  相似文献   

10.
11.
5-Hydroxymethylcytosine (5-hmC) generated by ten-eleven translocation 1–3 (TET1–3) enzymes is an epigenetic mark present in many tissues with different degrees of abundance. IL-1β and TNF-α are the two major cytokines present in arthritic joints that modulate the expression of many genes associated with cartilage degradation in osteoarthritis. In the present study, we investigated the global 5-hmC content, the effects of IL-1β and TNF-α on 5-hmC content, and the expression and activity of TETs and isocitrate dehydrogenases in primary human chondrocytes. The global 5-hmC content was found to be ∼0.1% of the total genome. There was a significant decrease in the levels of 5-hmC and the TET enzyme activity upon treatment of chondrocytes with IL-1β alone or in combination with TNF-α. We observed a dramatic (10–20-fold) decrease in the levels of TET1 mRNA expression and a small increase (2–3-fold) in TET3 expression in chondrocytes stimulated with IL-1β and TNF-α. IL-1β and TNF-α significantly suppressed the activity and expression of IDHs, which correlated with the reduced α-ketoglutarate levels. Whole genome profiling showed an erasure effect of IL-1β and TNF-α, resulting in a significant decrease in hydroxymethylation in a myriad of genes including many genes that are important in chondrocyte physiology. Our data demonstrate that DNA hydroxymethylation is modulated by pro-inflammatory cytokines via suppression of the cytosine hydroxymethylation machinery. These data point to new mechanisms of epigenetic control of gene expression by pro-inflammatory cytokines in human chondrocytes.  相似文献   

12.
Activation of the sigma-1 receptor (Sig-1R) improves functional recovery in models of experimental stroke and is known to modulate microglia function. The present study was conducted to investigate if Sig-1R activation after experimental stroke affects mediators of the inflammatory response in the ischemic hemisphere. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) and injected with the specific Sig-1R agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (SA4503) or saline for 5 days starting on day 2 after MCAO. Treatment did not affect the increased levels of the pro-inflammatory cytokines interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin 4 (IL-4), interleukin 5 (IL-5), and interleukin 13 (IL-13) in the infarct core and peri-infarct area after MCAO. In addition, treatment with SA4503 did not affect elevated levels of nitrite, TNF-α and IL-1β observed in primary cultures of microglia exposed to combined Hypoxia/Aglycemia, while the unspecific sigma receptor ligand 1,3-di-o-tolylguanidine (DTG) significantly decreased the production of nitrite and levels of TNF-α. Analysis of the ischemic hemisphere also revealed increased levels of ionized calcium binding adaptor molecule 1 (Iba1) levels in the infarct core of SA4503 treated animals. However, no difference in Iba1 immunoreactivity was detected in the infarct core. Also, levels of the proliferation marker proliferating cell nuclear antigen (PCNA) and OX-42 were not increased in the infarct core in rats treated with SA4503. Together, our results suggest that sigma-1 receptor activation affects Iba1 expression in microglia/macrophages of the ischemic hemisphere after experimental stroke but does not affect post-stroke inflammatory mediators.  相似文献   

13.
14.
AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.  相似文献   

15.
Dendritic cells (DCs) are pivotal in the development of specific T-cell responses to control pathogens, as they govern both the initiation and the polarization of adaptive immunity. To investigate the capacities of migrating DCs to respond to pathogens, we used physiologically generated lymph DCs (L-DCs). The flexible polarization of L-DCs was analysed in response to Salmonella or helminth secretions known to induce different T cell responses. Mature conventional CD1b+ L-DCs showed a predisposition to promote pro-inflammatory (IL-6), pro-Th1 (IL-12p40) and anti-inflammatory (IL-10) responses which were amplified by Salmonella, and limited to only IL-6 induction by helminth secretions. The other major population of L-DCs did not express the CD1b molecule and displayed phenotypic features of immaturity compared to CD1b+ L-DCs. Salmonella infection reduced the constitutive expression of TNF-α and IL-4 mRNA in CD1b- L-DCs, whereas this expression was not affected by helminth secretions. The cytokine response of T cells promoted by L-DCs was analysed in T cell subsets after co-culture with Salmonella or helminth secretion-driven CD1b+ or CD1b- L-DCs. T cells preferentially expressed the IL-17 gene, and to a lesser extent the IFN-γ and IL-10 genes, in response to Salmonella-driven CD1b+ L-DCs, whereas a preferential IL-10, IFN-γ and IL-17 gene expression was observed in response to Salmonella-driven CD1b- L-DCs. In contrast, a predominant IL-4 and IL-13 gene expression by CD4+ and CD8+ T cells was observed after stimulation of CD1b+ and CD1b- L-DCs with helminth secretions. These results show that mature conventional CD1b+ L-DCs maintain a flexible capacity to respond differently to pathogens, that the predisposition of CD1b- L-DCs to promote a Th2 response can be oriented towards other Th responses, and finally that the modulation of migrating L-DCs responses is controlled more by the pathogen encountered than the L-DC subsets.  相似文献   

16.
Wnt5a has been found recently to be involved in inflammation regulation through a mechanism that remains unclear. Immunohistochemical staining of infected human dental pulp and tissue from experimental dental pulpitis in rats showed that Wnt5a levels were increased. In vitro, Wnt5a was increased 8-fold in human dental pulp cells (HDPCs) after TNF-α stimulation compared with control cells. We then investigated the role of Wnt5a in HDPCs. In the presence of TNF-α, Wnt5a further increased the production of cytokines/chemokines, whereas Wnt5a knockdown markedly reduced cytokine/chemokine production induced by TNF-α. In addition, in HDPCs, Wnt5a efficiently induced cytokine/chemokine expression and, in particular, expression of IL-8 (14.5-fold) and CCL2 (25.5-fold), as assessed by a Luminex assay. The cytokine subsets regulated by Wnt5a overlap partially with those induced by TNF-α. However, no TNF-α and IL-1β was detected after Wnt5a treatment. We then found that Wnt5a alone and the supernatants of Wnt5a-treated HDPCs significantly increased macrophage migration, which supports a role for Wnt5a in macrophage recruitment and as an inflammatory mediator in human dental pulp inflammation. Finally, Wnt5a participates in dental pulp inflammation in a MAPK-dependent (p38-, JNK-, and ERK-dependent) and NF-κB-dependent manner. Our data suggest that Wnt5a, as an inflammatory mediator that drives the integration of cytokines and chemokines, acts downstream of TNF-α.  相似文献   

17.
18.
The objective of the study was to examine the regulation of CCN2 by inflammatory cytokines, IL-1β, and TNF-α and to determine whether CCN2 modulates IL-1β-dependent catabolic gene expression in nucleus pulposus (NP) cells. IL-1β and TNF-α suppress CCN2 mRNA and protein expression in an NF-κB-dependent but MAPK-independent manner. The conserved κB sites located at −93/−86 and −546/−537 bp in the CCN2 promoter mediated this suppression. On the other hand, treatment of NP cells with IL-1β in combination with CCN2 suppressed the inductive effect of IL-1β on catabolic genes, including MMP-3, ADAMTS-5, syndecan 4, and prolyl hydroxylase 3. Likewise, silencing of CCN2 in human NP cells resulted in elevated basal expression of several catabolic genes and inflammatory cytokines like IL-6, IL-4, and IL-12 as measured by gene expression and cytokine protein array, respectively. Interestingly, the suppressive effect of CCN2 on IL-1β was independent of modulation of NF-κB signaling. Using disintegrins, echistatin, and VLO4, peptide inhibitors to αvβ3 and α5β1 integrins, we showed that CCN2 binding to both integrins was required for the inhibition of IL-1β-induced catabolic gene expression. It is noteworthy that analysis of human tissues showed a trend of altered expression of these integrins during degeneration. Taken together, these results suggest that CCN2 and inflammatory cytokines form a functional negative feedback loop in NP cells that may be important in the pathogenesis of disc disease.  相似文献   

19.
20.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that play a critical immunosuppressive role in the tumour micro-environment. Although biological research on MDSCs has made progress, the relationship between the secretion of cytokines by MDSCs and poor prognosis is not clear, and there are no criteria to measure the functional status of MDSCs. Here, we detected the mRNA expression of IL-10, IL-12, TGF-β and TNF-α in MDSCs and the levels of these cytokines in MDSC culture supernatants of patients with myelodysplastic syndromes, and quantified the functional status of MDSCs by IL-10/IL-12 ratio and TGF-β/TNF-α ratio. We found that the ratio of IL-10/IL-12 and TGF-β/TNF-α was significantly higher in higher-risk MDS than in lower-risk MDS and normal control groups. The TGF-β/TNF-α ratio in MDSCs was positively correlated with the percentage of blast cells and was negatively correlated with the percentage of CD3+CD8+ T lymphocytes. Meanwhile, the TGF-β/TNF-α ratio was higher in patients with a lower absolute neutrophil count. It suggested that MDSCs in higher-risk MDS have a stronger immunosuppressive effect and might be related to poor prognosis. Quantifying the functional status of MDSCs with IL-10/IL-12 and TGF-β/TNF-α ratio might help to evaluate the balance of cellular immunity of MDSCs in MDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号