首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal.  相似文献   

2.
Giardia Cysts in Wastewater Treatment Plants in Italy   总被引:1,自引:2,他引:1       下载免费PDF全文
Reductions in annual rainfall in some regions and increased human consumption have caused a shortage of water resources at the global level. The recycling of treated wastewaters has been suggested for certain domestic, industrial, and agricultural activities. The importance of microbiological and parasitological criteria for recycled water has been repeatedly emphasized. Among water-borne pathogens, protozoa of the genera Giardia and Cryptosporidium are known to be highly resistant to water treatment procedures and to cause outbreaks through contaminated raw or treated water. We conducted an investigation in four wastewater treatment plants in Italy by sampling wastewater at each stage of the treatment process over the course of 1 year. The presence of the parasites was assessed by immunofluorescence with monoclonal antibodies. While Cryptosporidium oocysts were rarely observed, Giardia cysts were detected in all samples throughout the year, with peaks observed in autumn and winter. The overall removal efficiency of cysts in the treatment plants ranged from 87.0 to 98.4%. The removal efficiency in the number of cysts was significantly higher when the secondary treatment consisted of active oxidation with O2 and sedimentation instead of activated sludge and sedimentation (94.5% versus 72.1 to 88.0%; P = 0.05, analysis of variance). To characterize the cysts at the molecular level, the β-giardin gene was PCR amplified, and the products were sequenced or analyzed by restriction. Cysts were typed as assemblage A or B, both of which are human pathogens, stressing the potential risk associated with the reuse of wastewater.  相似文献   

3.
Candidatus Microthrix parvicella'' is a lipid-accumulating, filamentous bacterium so far found only in activated sludge wastewater treatment plants, where it is a common causative agent of sludge separation problems. Despite attracting considerable interest, its detailed physiology is still unclear. In this study, the genome of the RN1 strain was sequenced and annotated, which facilitated the construction of a theoretical metabolic model based on available in situ and axenic experimental data. This model proposes that under anaerobic conditions, this organism accumulates preferentially long-chain fatty acids as triacylglycerols. Utilisation of trehalose and/or polyphosphate stores or partial oxidation of long-chain fatty acids may supply the energy required for anaerobic lipid uptake and storage. Comparing the genome sequence of this isolate with metagenomes from two full-scale wastewater treatment plants with enhanced biological phosphorus removal reveals high similarity, with few metabolic differences between the axenic and the dominant community ‘Ca. M. parvicella'' strains. Hence, the metabolic model presented in this paper could be considered generally applicable to strains in full-scale treatment systems. The genomic information obtained here will provide the basis for future research into in situ gene expression and regulation. Such information will give substantial insight into the ecophysiology of this unusual and biotechnologically important filamentous bacterium.  相似文献   

4.

Background

The increasing use of multiwalled carbon nanotubes (MWCNTs) will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse.

Aims

To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge.

Methods

Three triplicate sequencing batch reactors (SBR) were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs.

Results

Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day) impact on nutrient removal from wastewater. After long-term (180 days) exposure to 1 mg/L MWCNTs, the average total nitrogen (TN) removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs) was increased after long-term exposure to 1 mg/L MWCNTs.

Conclusion

MWCNTs have adverse effects on biological wastewater nutrient removal, and altered the diversity and structure of bacterial community in activated sludge.  相似文献   

5.
The present study investigates the biodegradation of pharmaceutically active compounds (PhACs) by active biomass in activated sludge. Active heterotrophs (Xbh) which are known to govern COD removal are suggested as a determining factor for biological PhAC removal as well. Biodegradation kinetics of five polar PhACs were determined in activated sludge of two wastewater treatment plants which differed in size, layout and sludge retention time (SRT).Results showed that active fractions of the total suspended solids (TSS) differed significantly between the two sludges, indicating that TSS does not reveal information about heterotrophic activity. Furthermore, PhAC removal was significantly faster in the presence of high numbers of heterotrophs and a low SRT. Pseudo first-order kinetics were modified to include Xbh and used to describe decreasing PhAC elimination with increasing SRT.  相似文献   

6.
Characterization and biological treatment of pickling industry wastewater   总被引:2,自引:0,他引:2  
Pickling industry wastewaters present unique difficulties in biological treatment because of high salt content (3–6% salt). Conventional activated sludge cultures disintegrate or loose microbial activity as a result of plasmolysis at salt concentrations above 1%. In order to overcome adverse effects of salt in pickling wastewater, salt tolerant bacteria (Halobacter halobium) was added to activated sludge culture and used in biological treatment of the wastewater in an activated sludge unit. After characterization and nutrient balancing of the wastewater, an activated sludge unit was used in laboratory to investigate the effects of major process variables such as sludge age and hydraulic residence time on performance of the system. Single stage and two stage activated processes were used for the treatment of the pickling wastewater. More than 95% of COD removal was obtained with a single stage process at a sludge age of θc=10?d and hydraulic residence time of θH=30?h. Similar results were obtained with the two stage process, when sludge ages and hydraulic residence times for each stage were θc1c2=10?d, and θH1H2=15?h, respectively. Kinetic coefficients were determined and the design equations were developed by using the experimental data.  相似文献   

7.

The dominant filamentous bacteria associated with bulking incidents in Japanese activated sludge plants with nutrient removal were identified and their quantitative correlations with sludge settleability were assessed, with the aim of controlling bulking incidents by specifically suppressing bacterial growth. Fluorescence in situ hybridization (FISH) analyses using existing oligonucleotide FISH probes indicated that the presence of Eikelboom type 1851 filamentous bacteria belonging to the phylum Chloroflexi is correlated with biomass settleability in the municipal wastewater treatment plants examined. Real-time quantitative PCR (qPCR) assays developed in this study also showed a linear correlation between type 1851 filament members and sludge settleability, with the exception of some winter samples. The real-time qPCR assays and 16S ribosomal RNA gene amplicon sequencing to reveal the microbial community of activated sludge showed that the abundance of type 1851 at 200 mL g−1 of sludge volume index was estimated to be about 1.9% of the total microbial cells. The abundance of type 1851 served as a bulking indicator in plants where type 1851 was dominant.

  相似文献   

8.
Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.  相似文献   

9.
In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.  相似文献   

10.
生物吸附剂-活性污泥法吸附处理含铬电镀废水   总被引:3,自引:0,他引:3  
屈艳芬  叶锦韶  尹华  彭辉  张娜 《生态科学》2006,25(4):335-338
研究了复合生物吸附剂FY01和活性污泥处理含铬电镀废水的吸附性能.结果表明,铬的生物吸附分为快速15g·L-1污泥对通用电镀废水、康力电镀废水中铬的联合去除率分别高达97.7%和88.1%,比两者单独处理电镀废水的吸附和缓慢吸附两个阶段.FY01具有良好的吸附稳定性,对废水的pH适应能力强,当pH=2.5~6时,10g·L-1FY01和5g·L-1污泥曝气处理2000mL电镀废水2h后,68.6mg·L-1含铬通用电镀废水中总铬的去除率达71.5~75.6%;50.1mg·L-1含铬康力电镀废水中总铬的去除率高达80.0~90.0%.FY01和活性污泥具有良好的协同促进作用,10g·L-1FY01和除铬率总和分别高出39.8%、44.6%.  相似文献   

11.
Thermophilic biological nitrogen removal in industrial wastewater treatment   总被引:1,自引:0,他引:1  
Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification–two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.  相似文献   

12.
In order to investigate if there are geographic differences of bacterial community in the activated sludge collected from different geographic regions (eastern, northwestern, and northern parts) of China and to determine the co-occurrence patterns of bacterial community, activated sludge samples were collected from 10 municipal wastewater treatment plants located in 8 cities in China. High-throughput pyrosequencing combined with the bioinformatics analysis were used to examine the bacterial community compositions in the activated sludge samples. The result of taxonomy classifier indicated that a total of 76 genera were commonly shared by more than 7 samples, which accounted for 62 to 96 % of the classified sequences in each sample. Even though some core genera existed in all examined activated sludge samples regardless of the sampling geographic location and treatment process, significant geographic differences of bacterial community compositions among the activated sludge samples were revealed by the nonmetric multidimensional scaling (NMDS) and analyses of similarity (ANOSIM) analysis. A total of 165 pairs of significant and robust correlations (positive and negative) were identified from 61 bacterial genera based on the network analysis. The data obtained in this study could provide useful information to understand the bacterial community composition in geographically distributed wastewater treatment plants and discern the co-occurrence patterns of bacterial community.  相似文献   

13.
Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better understanding and monitoring of municipal WWTPs as sources of fecal pollution in water resources.  相似文献   

14.
Polysaccharides constitute a significant part of the organic matter in domestic wastewater and their hydrolysis plays an important role in their transformation and nutrient removal in activated sludge wastewater treatment plants. However, there is no information available about the identity, ecophysiology, and abundance of starch-hydrolyzing organisms (SHOs) in these plants. In this study, fluorescence in situ enzyme staining with BODIPY fluorescein-labeled starch was applied and optimized to label SHOs expressing alpha-amylase in activated sludge plants. Fluorescence on the surface of bacteria expressing alpha-amylase activity was clearly visualized. In 11 full-scale nutrient-removing wastewater treatment plants examined, the morphotypes of the dominant SHOs were always cocci in clusters of tetrads, short rods in clusters, and some filamentous organisms. The SHOs were identified by combining in situ enzyme staining and FISH using a range of available oligonucleotide probes. All the SHOs observed were Actinobacteria, and most had the phenotype of polyphosphate-accumulating organisms closely related to the genus Tetrasphaera in the family Intrasporangiaceae. The SHOs were present in most of the wastewater treatment plants examined and comprised, in total, up to 11% of bacterial biovolume and thus formed an important part of the microbial communities.  相似文献   

15.
The aim of the present study was to investigate the distribution of bacteria and detect the presence of quinolone resistance gene (qnrA) and integrons (intI1, intI2) in a habitat polluted by pharmaceutical sewage. The bacteria were isolated by nutrient agar and nutrient broth from waste water and sludge collected from the sewage outfall of a pharmaceutical factory. The bacteria were identified by Gram staining and biochemical tests, and the bacterial community diversity was analyzed by Shannon–Wiener diversity index (H), Pielou evenness index (J) and Simpson’s diversity index (D). The occurrence of qnrA and integrons (intI1, intI2) were detected by Real-time PCR assays. The results showed that 90 strains were isolated from water samples and sludge samples including 22 genera and 26 species. Types of bacteria in water samples contained 18 genera and 20 species, while 13 genera and 14 species were detected in sludge samples. Fifty-five Enterobacteriaceae isolates (61.11 %, 55 of 90) were the predominant bacteria in water and sludge samples. Bacterial species richness and evenness in water samples were higher than in sludge samples. The resistance genes of qnrA and integrons (intI1, intI2) with the total DNA and single isolate plasmid DNA were detected. There were a variety of bacterial species and the presence of qnrA and integrons (intI1, intI2) genes in pharmaceutical wastewater habitats, in which Enterobacteriaceae strains were the dominant bacteria. These results suggested that pharmaceutical wastewater had potential risks to public health.  相似文献   

16.
Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.  相似文献   

17.
During powdered activated carbon-activated sludge (PAC-AS) treatment of acrylonitrile (ACN) plant wastewater, advantageous effects on COD reduction and specific respiration rate were observed. However, these advantages diminished gradually with prolonged operation. This can be attributed to the irreversible adsorption of some nonbiodegradable ACN wastewater components resulting in the inhibition of in situ bioregeneration of PAC.  相似文献   

18.
The present study aims at investigating the possibility of assessing performance and depuration conditions of an activated sludge wastewater treatment plant through an exploration of the microfauna. The plant, receiving textile industrial (70%) and domestic (30%) sewage, consists of a two-step biological depurating plant, with activated sludge followed by a percolating system. A total of 35 samples were analyzed during five months, and 30 taxa of protozoa and small metazoa were found. Epistylis rotans, Vorticella microstoma, Aspidisca cicada and Arcella sp. were the most frequent protozoa identified. Several significant correlations between biological, physical–chemical and operational parameters were determined, but no significant correlations could be established between biological parameters and removal efficiencies. The Sludge Biotic Index (SBI) reflected the overall state of the community but only presented statistically significant correlations with the influent total suspended solids (TSS), total suspended solids in mixed-liquor (MLTSS) and dissolved oxygen (DO). The determination of key groups and taxa along with general community parameters showed to have potential value as indicators of the depuration conditions. Despite the impossibility of correlating biological parameters and the removal efficiencies, the present study attests the value of the microfauna to assess the operation of the activated sludge systems even in the case of non-conventional plants and/or plants receiving industrial sewage.  相似文献   

19.
The distribution and phylogenetic affiliations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-degrading denitrifying bacteria in activated sludge were studied by a polyphasic approach including culture-independent biomarker and molecular analyses as well as cultivation methods. A total of 23 strains of PHBV-degrading denitrifiers were isolated from activated sludges from different sewage treatment plants. 16S ribosomal DNA (rDNA) sequence comparisons showed that 20 of the isolates were identified as members of the family Comamonadaceae, a major group of β-Proteobacteria. When the sludges from different plants were acclimated with PHBV under denitrifying conditions in laboratory scale reactors, the nitrate removal rate increased linearly during the first 4 weeks and reached 20 mg NO3-N h−1 g of dry sludge−1 at the steady state. The bacterial-community change in the laboratory scale sludges during the acclimation was monitored by rRNA-targeted fluorescence in situ hybridization and quinone profiling. Both approaches showed that the population of β-Proteobacteria in the laboratory sludges increased sharply during acclimation regardless of their origins. 16S rDNA clone libraries were constructed from two different acclimated sludges, and a total of 37 clones from the libraries were phylogenetically analyzed. Most of the 16S rDNA clones were grouped with members of the family Comamonadaceae. The results of our polyphasic approach indicate that β-Proteobacteria, especially members of the family Comamonadaceae, are primary PHBV-degrading denitrifiers in activated sludge. Our data provide useful information for the development of a new nitrogen removal system with solid biopolymer as an electron donor.  相似文献   

20.
Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in situ dynamics of important intracellular storage polymers, measured by FISH-Raman in activated sludge from four full-scale EBPR plants and from a lab-scale reactor fed with different substrates. Moreover, seven distinct Dechloromonas species were determined from a set of ten high-quality metagenome-assembled genomes (MAGs) from Danish EBPR plants, each encoding the potential for polyphosphate (poly-P), glycogen, and polyhydroxyalkanoates (PHA) accumulation. The two species exhibited an in situ phenotype in complete accordance with the metabolic information retrieved by the MAGs, with dynamic levels of poly-P, glycogen, and PHA during feast-famine anaerobic–aerobic cycling, legitimately placing these microorganisms among the important PAOs. They are potentially involved in denitrification showing niche partitioning within the genus and with other important PAOs. As no isolates are available for the two species, we propose the names Candidatus Dechloromonas phosphoritropha and Candidatus Dechloromonas phosphorivorans.Subject terms: Water microbiology, Microbial ecology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号