首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The large conducting arteries in vertebrates are composed of a specialized extracellular matrix designed to provide pulse dampening and reduce the work performed by the heart. The mix of matrix proteins determines the passive mechanical properties of the arterial wall1. When the matrix proteins are altered in development, aging, disease or injury, the arterial wall remodels, changing the mechanical properties and leading to subsequent cardiac adaptation2. In normal development, the remodeling leads to a functional cardiac and cardiovascular system optimized for the needs of the adult organism. In disease, the remodeling often leads to a negative feedback cycle that can cause cardiac failure and death. By quantifying passive arterial mechanical properties in development and disease, we can begin to understand the normal remodeling process to recreate it in tissue engineering and the pathological remodeling process to test disease treatments.Mice are useful models for studying passive arterial mechanics in development and disease. They have a relatively short lifespan (mature adults by 3 months and aged adults by 2 years), so developmental3 and aging studies4 can be carried out over a limited time course. The advances in mouse genetics provide numerous genotypes and phenotypes to study changes in arterial mechanics with disease progression5 and disease treatment6. Mice can also be manipulated experimentally to study the effects of changes in hemodynamic parameters on the arterial remodeling process7. One drawback of the mouse model, especially for examining young ages, is the size of the arteries. We describe a method for passive mechanical testing of carotid arteries from mice aged 3 days to adult (approximately 90 days). We adapt a commercial myograph system to mount the arteries and perform multiple pressure or axial stretch protocols on each specimen. We discuss suitable protocols for each age, the necessary measurements and provide example data. We also include data analysis strategies for rigorous mechanical characterization of the arteries.  相似文献   

2.
NLRP1 was the first NOD-like receptor described to form an inflammasome, recruiting ASC to activate caspase-1, which processes interleukin-1β and interleukin-18 to their active form. A wealth of new genetic information has now redefined our understanding of this innate immune sensor. Specifically, rare loss-of-function variants in the N-terminal pyrin domain indicate that this part of NLRP1 is autoinhibitory and normally acts to prevent a familial autoinflammatory skin disease associated with cancer. In the absence of a ligand to trigger human NLRP1, these mutations have now confirmed the requirement of NLRP1 autolytic cleavage within the FIIND domain, which had previously been implicated in NLRP1 activation. Autolytic cleavage generates a C-terminal fragment of NLRP1 containing the CARD domain which then forms an ASC-dependent inflammasome. The CARD domain as an inflammasome linker is consistent with the observation that under some conditions, particularly for mouse NLRP1, caspase-1 can be engaged directly, and although it is no longer processed, it is still capable of producing mature IL-1β. Additional rare variants in a linker region between the LRR and FIIND domains of NLRP1 also cause autoinflammatory disease in both humans and mice. This new genetic information is likely to provide for more mechanistic insight in the years to come, contributing to our understanding of how NLRP1 functions as an innate immune sensor of infection and predisposes to autoimmune or autoinflammatory diseases.  相似文献   

3.

Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea (OSA), is associated with hypertension. The increased of carotid body (CB) sensitivity due to enhanced sympathetic efferent may be mainly responsible for the elevation of blood pressure. Accordingly, we studied this effect of Endothelin-1 (ET-1)-induced CB chemosensory response to CIH, as a vasoactive peptide expressed in CB. The purpose of this study was to investigate the mean arterial blood pressure (MAP) and renal sympathetic nerve activity (RSNA) responses in CIH group by injecting ET-1 to directly stimulate CB chemoreceptor. Furthermore, whether ET receptor-mediated PKC and p38MAPK signaling pathway was involved in CIH-induced CB activation was also studied. Male Sprague–Dawley rats were exposed to CIH (8 h/day for 3 weeks) and the MAP and RSNA were recorded in CIH rats and Sham rats. Our results demonstrated that ET-1-induced MAP and RSNA increase were mainly mediated by ETA receptor activation in CB chemosensory after CIH exposure. Moreover, P38MAPK and PKC signaling pathway might be involved in ET-1-induced increase of MAP and RSNA in CIH group, which provided a potential therapeutic target of OSA.

  相似文献   

4.
This study analyzed the effect of in utero exposure to maternal diabetes on contraction to noradrenaline in mesenteric resistance arteries (MRA) from adult offspring, focusing on the role of cyclooxygenase (COX)-derived prostanoids. Diabetes in the maternal rat was induced by a single injection of streptozotocin (50 mg/kg body weight) on day 7 of pregnancy. Contraction to noradrenaline was analyzed in isolated MRA from offspring of diabetic (O-DR) and non-diabetic (O-CR) rats at 3, 6 and 12 months of age. Release of thromboxane A2 (TxA2) and prostaglandins E2 (PGE2) and F (PGF), was measured by specific enzyme immunoassay kits. O-DR developed hypertension from 6 months of age compared with O-CR. Arteries from O-DR were hyperactive to noradrenaline only at 6 and 12 months of age. Endothelial removal abolished this hyperreactivity to noradrenaline between O-CR and O-DR. Preincubation with either the COX-1/2 (indomethacin) or COX-2 inhibitor (NS-398) decreased noradrenaline contraction only in 6- and 12-month-old O-DR, while it remained unmodified by COX-1 inhibitor SC-560. In vessels from 6-month-old O-DR, a similar reduction in the contraction to noradrenaline produced by NS-398 was observed when TP and EP receptors were blocked (SQ29548+AH6809). In 12-month-old O-DR, this effect was only achieved when TP, EP and FP were blocked (SQ29548+AH6809+AL8810). Noradrenaline-stimulated TxB2 and PGE2 release was higher in 6- and 12-month-old O-DR, whereas PGF was increased only in 12-month-old O-DR. Our results demonstrated that in utero exposure to maternal hyperglycaemia in rats increases the participation of COX-2-derived prostanoids on contraction to noradrenaline, which might help to explain the greater response to this agonist in MRA from 6- and 12-month-old offspring. As increased contractile response in resistance vessels may contribute to hypertension, our results suggest a role for these COX-2-derived prostanoids in elevating vascular resistance and blood pressure in offspring of diabetic rats.  相似文献   

5.
We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2)-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2) knockout (KO) on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d) or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT) and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD), μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2.  相似文献   

6.
观察血管平滑肌细胞(VSMCs)在自发性高血压大鼠(SHR)颈动脉重构中的作用及替米沙坦的干预效果.将30只12周龄的SHR随机分为高血压组(SHR)、替米沙坦高剂量组(TelH)、替米沙坦低剂量组(TelL),另设同性别、周龄的WKY大鼠为对照组(n=10),干预18周.观察各组大鼠收缩压(SBP)、颈动脉中膜厚度(MT)、中膜横截面积(MCSA)、中膜细胞平均核面积、颈动脉 VSMCs增殖指数(PI)及凋亡指数(AI)等的变化.结果显示: ①两周后TelH组SBP明显低于SHR组(P<0.01),其降压作用持续至实验结束,而TelL组SBP与SHR组无显著性差异(P>0.05);②SHR组的MT、MCSA分别明显高于WKY组(P<0.01),TelH组的MT、MCSA分别明显低于SHR组(P<0.01),TelL组的MT明显低于SHR组(P<0.05);③SHR组中膜VSMCs平均核面积明显大于WKY组(P<0.01),而TelH、TelL组分别小于SHR组(P<0.05);④各组颈动脉中膜VSMCs的PI均无明显差异(P>0.05);SHR组颈动脉中膜VSMCs的AI明显低于WKY组(P<0.01),而TelH、TelL组明显高于SHR组(P<0.01);SHR组颈动脉中膜VSMCs的PI/AI明显高于WKY组(P<0.01),而TelH、TelL组明显低于SHR组(P<0.01);⑤颈动脉中膜VSMCs的AI与中膜MCSA呈显著负相关(r = -0.871,P<0.01 ).说明VSMCs的肥大和增殖/凋亡失衡可能在SHR颈动脉重构中起重要作用,替米沙坦除降压作用外,能通过减轻VSMCs肥大,增加VSMCs凋亡,使增殖/凋亡趋于平衡而减轻其重构.  相似文献   

7.

Background

Skeletal muscle wasting in acute lung injury (ALI) patients increases the morbidity and mortality associated with this critical illness. The contribution of laryngeal muscle wasting to these outcomes is unknown, though voice impairments and aspiration are common in intensive care unit (ICU) survivors. We evaluated the intrinsic laryngeal abductor (PCA, posterior cricoarytenoid), adductor (CT, cricothyroid) and limb (EDL, extensor digitorum longus) muscles in a mouse model of ALI.

Methods

Escherichia coli lipopolysaccharides were instilled into the lungs of adult male C57Bl6J mice (ALI mice). Limb and intrinsic laryngeal muscles were analyzed for fiber size, type, protein expression and myosin heavy chain (MyHC) composition by SDS-PAGE and mass spectroscopy.

Results

Marked muscle atrophy occurred in the CT and EDL muscles, while the PCA was spared. The E3 ubiquitin ligase muscle ring finger-1 protein (MuRF1), a known mediator of limb muscle atrophy in this model, was upregulated in the CT and EDL, but not in the PCA. Genetic inhibition of MuRF1 protected the CT and EDL from ALI-induced muscle atrophy. MyHC-Extraocular (MyHC-EO) comprised 27% of the total MyHC in the PCA, distributed as hybrid fibers throughout 72% of PCA muscle fibers.

Conclusion

The vocal cord abductor (PCA) contains a large proportion of fibers expressing MyHC-EO and is spared from muscle atrophy in ALI mice. The lack of MuRF1 expression in the PCA suggests a previously unrecognized mechanism whereby this muscle is spared from atrophy. Atrophy of the vocal cord adductor (CT) may contribute to the impaired voice and increased aspiration observed in ICU survivors. Further evaluation of the sparing of muscles involved in systemic wasting diseases may lead to potential therapeutic targets for these illnesses.  相似文献   

8.

Aim

Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice.

Methods and Results

Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice.

Conclusions

Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes.  相似文献   

9.
10.
Arterial thrombosis is a critical event in the pathogenesis of lesion development. In this study, we evaluated the effect of heme oxygenase-1 (HO-1), a stress-inducible enzyme with vasoprotective functions, on arterial thrombosis following vascular mechanical injury. The carotid arteries of apoE-deficient mice were subjected to angioplasty with a modified beaded-needle. Arterial thrombosis occurred at 12 h after injury. Treatment of the injured vessels with an adenovirus bearing HO-1 gene (Adv-HO-1) (1× 108 pfu), but not saline or empty adenovirus (Adv), immediately after angioplasty resulted in earlier thrombolysis and restoration of blood flow detected at 24 h. Immunohistochemistry revealed that the arterial plasminogen activator inhibitor-1 (PAI-1) expression was markedly reduced in Adv-HO-1-treated injured arteries as compared to control counterparts. The thrombolytic effect was also observed by exposing animals with existing arterial thrombosis to carbon monoxide (CO) (250 ppm, 2 h), a byproduct derived from heme degradation by HO-1. In parallel with less fibrin(ogen) deposition, the macrophage infiltration, monocyte chemoattractant protein-1 expression and neointimal formation assessed at 2 weeks after angioplasty were substantially reduced in injured arteries treated with Adv-HO-1. These results support a role of early thrombolysis induced by CO in HO-1-mediated protection against intimal hyperplasia after vascular injury.  相似文献   

11.
Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D). However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.  相似文献   

12.
13.
14.
Mitogen-activated protein (MAP) kinase phosphatases are important negative regulators of the levels and kinetics of MAP kinase activation that modulate cellular responses. The dual-specificity phosphatase MAP KINASE PHOSPHATASE1 (MKP1) was previously shown to regulate MAP KINASE6 (MPK6) activation levels and abiotic stress responses in Arabidopsis thaliana. Here, we report that the mkp1 null mutation in the Columbia (Col) accession results in growth defects and constitutive biotic defense responses, including elevated levels of salicylic acid, camalexin, PR gene expression, and resistance to the bacterial pathogen Pseudomonas syringae. PROTEIN TYROSINE PHOSPHATASE1 (PTP1) also interacts with MPK6, but the ptp1 null mutant shows no aberrant growth phenotype. However, the pronounced constitutive defense response of the mkp1 ptp1 double mutant reveals that MKP1 and PTP1 repress defense responses in a coordinated fashion. Moreover, mutations in MPK3 and MPK6 distinctly suppress mkp1 and mkp1 ptp1 phenotypes, indicating that MKP1 and PTP1 act as repressors of inappropriate MPK3/MPK6-dependent stress signaling. Finally, we provide evidence that the natural modifier of mkp1 in Col is largely the disease resistance gene homolog SUPPRESSOR OF npr1-1, CONSTITUTIVE 1 (SNC1) that is absent in the Wassilewskija accession. Our data thus indicate a major role of MKP1 and PTP1 in repressing salicylic acid biosynthesis in the autoimmune-like response caused by SNC1.  相似文献   

15.
Synthesis of nucleosides by the pentosyl transfer reaction in Ps. trifolii (IAM-1555) was studied. The ribosyl transfer reaction between purine or pyrimidine bases and their nucleosides as an acceptor and a donor, respectively, was observed in the presence or absence of inorganic phosphate, and the participations of nucleoside phosphorylase in the former and nucleoside N-ribosyltransferase in the latter were suggested. This transribosylation to the base in the latter was observed to proceed stoichiometrically between pH 6 and 9.5, but the apparent optimal pH in the former was observed at around 10.5. Effects of cultural condition of bacterium, reaction temperature and metallic ions on this reaction and acceptor-and donor-specificities were studied in detail.  相似文献   

16.
G2 arrest of cells suffering DNA damage in S phase is crucial to avoid their entry into mitosis, with the concomitant risks of oncogenic transformation. According to the current model, signals elicited by DNA damage prevent mitosis by inhibiting both activation and nuclear import of cyclin B1-Cdk1, a master mitotic regulator. We now show that normal human fibroblasts use additional mechanisms to block activation of cyclin B1-Cdk1. In these cells, exposure to nonrepairable DNA damage leads to nuclear accumulation of inactive cyclin B1-Cdk1 complexes. This nuclear retention, which strictly depends on association with endogenous p21, prevents activation of cyclin B1-Cdk1 by Cdc25 and Cdk-activating kinase as well as its recruitment to the centrosome. In p21-deficient normal human fibroblasts and immortal cell lines, cyclin B1 fails to accumulate in the nucleus and could be readily detected at the centrosome in response to DNA damage. Therefore, in normal cells, p21 exerts a dual role in mediating DNA damage-induced cell cycle arrest and exit before mitosis. In addition to blocking pRb phosphorylation, p21 directly prevents mitosis by inactivating and maintaining the inactive state of mitotic cyclin-Cdk complexes. This, with subsequent degradation of mitotic cyclins, further contributes to the establishment of a permanent G2 arrest.  相似文献   

17.
18.
Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel.  相似文献   

19.
Acute pyelonephritis (APN), which is mainly caused by uropathogenic Escherichia coli (UPEC), is the most common bacterial complication in renal transplant recipients receiving immunosuppressive treatment. However, it remains unclear how immunosuppressive drugs, such as the calcineurin inhibitor cyclosporine A (CsA), decrease renal resistance to UPEC. Here, we investigated the effects of CsA in host defense against UPEC in an experimental model of APN. We show that CsA-treated mice exhibit impaired production of the chemoattractant chemokines CXCL2 and CXCL1, decreased intrarenal recruitment of neutrophils, and greater susceptibility to UPEC than vehicle-treated mice. Strikingly, renal expression of Toll-like receptor 4 (Tlr4) and nucleotide-binding oligomerization domain 1 (Nod1), neutrophil migration capacity, and phagocytic killing of E. coli were significantly reduced in CsA-treated mice. CsA inhibited lipopolysaccharide (LPS)-induced, Tlr4-mediated production of CXCL2 by epithelial collecting duct cells. In addition, CsA markedly inhibited Nod1 expression in neutrophils, macrophages, and renal dendritic cells. CsA, acting through inhibition of the nuclear factor of activated T-cells (NFATs), also markedly downregulated Nod1 in neutrophils and macrophages. Silencing the NFATc1 isoform mRNA, similar to CsA, downregulated Nod1 expression in macrophages, and administration of the 11R-VIVIT peptide inhibitor of NFATs to mice also reduced neutrophil bacterial phagocytosis and renal resistance to UPEC. Conversely, synthetic Nod1 stimulating agonists given to CsA-treated mice significantly increased renal resistance to UPEC. Renal transplant recipients receiving CsA exhibited similar decrease in NOD1 expression and neutrophil phagocytosis of E. coli. The findings suggest that such mechanism of NFATc1-dependent inhibition of Nod1-mediated innate immune response together with the decrease in Tlr4-mediated production of chemoattractant chemokines caused by CsA may contribute to sensitizing kidney grafts to APN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号