首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Genome sequencing analyses revealed that Aspergillus nidulans has orthologous genes to all those of the high-osmolarity glycerol (HOG) response mitogen-activated protein kinase (MAPK) pathway of Saccharomyces cerevisiae. A. nidulans mutant strains lacking sskA, sskB, pbsB, or hogA, encoding proteins orthologous to the yeast Ssk1p response regulator, Ssk2p/Ssk22p MAPKKKs, Pbs2p MAPKK and Hog1p MAPK, respectively, showed growth inhibition under high osmolarity, and HogA MAPK in these mutants was not phosphorylated under osmotic or oxidative stress. Thus, activation of the A. nidulans HOG (AnHOG) pathway depends solely on the two-component signalling system, and MAPKK activation mechanisms in the AnHOG pathway differ from those in the yeast HOG pathway, where Pbs2p is activated by two branches, Sln1p and Sho1p. Expression of pbsB complemented the high-osmolarity sensitivity of yeast pbs2Delta, and the complementation depended on Ssk2p/Ssk22p, but not on Sho1p. Pbs2p requires its Pro-rich motif for binding to the Src-homology3 (SH3) domain of Sho1p, but PbsB lacks a typical Pro-rich motif. However, a PbsB mutant (PbsB(Pro)) with the yeast Pro-rich motif was activated by the Sho1p branch in yeast. In contrast, HogA in sskADelta expressing PbsB(Pro) was not phosphorylated under osmotic stress, suggesting that A. nidulans ShoA, orthologous to yeast Sho1p, is not involved in osmoresponsive activation of the AnHOG pathway. We also found that besides HogA, PbsB can activate another Hog1p MAPK orthologue, MpkC, in A. nidulans, although mpkC is dispensable in osmoadaptation. In this study, we discuss the differences between the AnHOG and the yeast HOG pathways.  相似文献   

2.
The yeast high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway has been characterized as being activated solely by osmotic stress. In this work, we show that the Hog1 MAPK is also activated by heat stress and that Sho1, previously identified as a membrane-bound osmosensor, is required for heat stress activation of Hog1. The two-component signaling protein, Sln1, the second osmosensor in the HOG pathway, was not involved in heat stress activation of Hog1, suggesting that the Sho1 and Sln1 sensors discriminate between stresses. The possible function of Hog1 activation during heat stress was examined, and it was found that the hog1Δ strain does not recover as rapidly from heat stress as well as the wild type. It was also found that protein tyrosine phosphatases (PTPs) Ptp2 and Ptp3, which inactivate Hog1, have two functions during heat stress. First, they are essential for survival at elevated temperatures, preventing lethality due to Hog1 hyperactivation. Second, they block inappropriate cross talk between the HOG and the cell wall integrity MAPK pathways, suggesting that PTPs are important for maintaining specificity in MAPK signaling pathways.  相似文献   

3.
In Saccharomyces cerevisiae, a phosphorelay signal transduction pathway composed of Sln1p, Ypd1p, and Ssk1p, which are homologous to bacterial two-component signal transducers, is involved in the osmosensing mechanism. In response to high osmolarity, the phosphorelay system is inactivated and Ssk1p remains unphosphorylated. Unphosphorylated Ssk1p binds to and activates the Ssk2p mitogen-activated protein (MAP) kinase kinase kinase, which in turn activates the downstream components of the high-osmolarity glycerol response (HOG) MAP kinase cascade. Here, we report a novel inactivation mechanism for Ssk1p involving degradation by the ubiquitin-proteasome system. Degradation is regulated by the phosphotransfer from Ypd1p to Ssk1p, insofar as unphosphorylated Ssk1p is degraded more rapidly than phosphorylated Ssk1p. Ubc7p/Qri8p, an endoplasmic reticulum-associated ubiquitin-conjugating enzyme, is involved in the phosphorelay-regulated degradation of Ssk1p. In ubc7Delta cells in which the degradation is hampered, the dephosphorylation and/or inactivation process of the Hog1p MAP kinase is delayed compared with wild-type cells after the hyperosmotic treatment. Our results indicate that unphosphorylated Ssk1p is selectively degraded by the Ubc7p-dependent ubiquitin-proteasome system and that this mechanism downregulates the HOG pathway after the completion of the osmotic adaptation.  相似文献   

4.
The Hog1 mitogen-activated protein kinase (MAPK) plays a central role in stress responses in the human pathogen Candida albicans. Here, we have investigated the MAPK kinase kinase (MAPKKK)-dependent regulation of the pathway. In contrast to the Hog1 pathway in Saccharomyces cerevisiae, which is regulated by three MAPKKKs (Ssk2, Ssk22, and Ste11), our results demonstrate that Hog1 in C. albicans is regulated by a single MAPKKK Ssk2. Deletion of SSK2 results in comparable stress and morphological phenotypes exhibited by hog1Delta cells, and Ssk2 is required for the stress-induced phosphorylation and nuclear accumulation of Hog1, and for Hog1-dependent gene expression. Furthermore, phenotypes associated with deletion of SSK2 can be circumvented by expression of a phosphomimetic mutant of the MAPKK Pbs2, indicating that Ssk2 regulates Hog1 via activation of Pbs2. In S. cerevisiae, the Hog1 pathway is also regulated by the MAPKKK Ste11. However, we can find no connection between Ste11 and the regulation of Hog1 in C. albicans. Furthermore, expression of a chimeric Pbs2 protein containing the Ste11-dependent regulatory region of S. cerevisiae Pbs2, fails to stimulate Ste11-dependent stress signaling in C. albicans. Collectively, our data show that Ssk2 is the sole MAPKKK to relay stress signals to Hog1 in C. albicans and that the MAPK signaling network in C. albicans has diverged significantly from the corresponding network in S. cerevisiae.  相似文献   

5.
Phosphatidylinositol‐4‐phosphate (PI(4)P) is an important regulator of Golgi function. Metabolic regulation of Golgi PI(4)P requires the lipid phosphatase Sac1 that translocates between endoplasmic reticulum (ER) and Golgi membranes. Localization of Sac1 responds to changes in glucose levels, yet the upstream signaling pathways that regulate Sac1 traffic are unknown. Here, we report that mitogen‐activated protein kinase (MAPK) Hog1 transmits glucose signals to the Golgi and regulates localization of Sac1. We find that Hog1 is rapidly activated by both glucose starvation and glucose stimulation, which is independent of the well‐characterized response to osmotic stress but requires the upstream element Ssk1 and is controlled by Snf1, the yeast homolog of AMP‐activated kinase (AMPK). Elimination of either Hog1 or Snf1 slows glucose‐induced translocation of Sac1 lipid phosphatase from the Golgi to the ER and thus delays PI(4)P accumulation at the Golgi. We conclude that a novel cross‐talk between the HOG pathway and Snf1/AMPK is required for the metabolic control of lipid signaling at the Golgi.  相似文献   

6.
The Saccharomyces cerevisiae high osmolarity glycerol (HOG) mitogen-activated protein kinase pathway is required for osmoadaptation and contains two branches that activate a mitogen-activated protein kinase (Hog1) via a mitogen-activated protein kinase kinase (Pbs2). We have characterized the roles of common pathway components (Hog1 and Pbs2) and components in the two upstream branches (Ste11, Sho1, and Ssk1) in response to elevated osmolarity by using whole-genome expression profiling. Several new features of the HOG pathway were revealed. First, Hog1 functions during gene induction and repression, cross talk inhibition, and in governing the regulatory period. Second, the phenotypes of pbs2 and hog1 mutants are identical, indicating that the sole role of Pbs2 is to activate Hog1. Third, the existence of genes whose induction is dependent on Hog1 and Pbs2 but not on Ste11 and Ssk1 suggests that there are additional inputs into Pbs2 under our inducing conditions. Fourth, the two upstream pathway branches are not redundant: the Sln1-Ssk1 branch has a much more prominent role than the Sho1-Ste11 branch for activation of Pbs2 by modest osmolarity. Finally, the general stress response pathway and both branches of the HOG pathway all function at high osmolarity. These studies demonstrate that cells respond to increased osmolarity by using different signal transduction machinery under different conditions.  相似文献   

7.
8.
In Saccharomyces cerevisiae, external high osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which controls various aspects of osmoadaptation. Ssk1 is a homolog of bacterial two-component response regulators and activates the Ssk2 MAPK kinase kinase upstream of Hog1. It has been proposed that unphosphorylated Ssk1 (Ssk1-OH) is the active form and that Ssk1 phosphorylated (Ssk1~P) at Asp554 by the Sln1-Ypd1-Ssk1 multistep phosphorelay mechanism is the inactive form. In this study, we show that constitutive activation of Ssk2 occurs when Ssk1 phosphorylation is blocked by either an Ssk1 mutation at the phosphorylation site or an Ssk1 mutation that inhibits its interaction with Ypd1, the donor of phosphate to Ssk1. Thus, Ssk1-OH is indeed necessary for Ssk2 activation. However, overexpression of wild-type Ssk1 or of an Ssk1 mutant that cannot bind Ssk2 prevents constitutively active Ssk1 mutants from activating Ssk2. Therefore, Ssk1 has a dual function as both an activator of Ssk2 and an inhibitor of Ssk1 itself. We also found that Ssk1 exists mostly as a dimer within cells. From mutant phenotypes, we deduce that only the Ssk1-OH/Ssk1-OH dimer can activate Ssk2 efficiently. Hence, because Ssk1~P binds to and inhibits Ssk1-OH, moderate fluctuation of the level of Ssk1-OH does not lead to nonphysiological and detrimental activation of Hog1.  相似文献   

9.
10.
In Saccharomyces cerevisiae, external high osmolarity activates the HOG MAPK pathway, which controls various aspects of osmoregulation. MAPKKK Ssk2 is activated by Ssk1 in the SLN1 branch of the osmoregulatory HOG MAPK pathway under hyperosmotic stress. We observed that Ssk2 can be activated independent of Ssk1 upon osmotic shock by an unidentified mechanism. The domain for the Ssk1p-independent activation was identified to be located between the amino acids 177∼240. This region might be involved in the binding of an unknown regulator to Ssk2 which in turn activates Ssk2p without Ssk1p under hyperosmotic stress. The osmotic stress response through the Ssk1p-independent Ssk2p activation is strong, although its duration is short compared with the Ssk1p-dependent activation. The alternative Ssk2p activation is also important for the salt resistance.  相似文献   

11.
Raitt DC  Posas F  Saito H 《The EMBO journal》2000,19(17):4623-4631
The adaptive response to hyperosmotic stress in yeast, termed the high osmolarity glycerol (HOG) response, is mediated by two independent upstream pathways that converge on the Pbs2 MAP kinase kinase (MAPKK), leading to the activation of the Hog1 MAP kinase. One branch is dependent on the Sho1 transmembrane protein, whose primary role was found to be the binding and translocation of the Pbs2 MAPKK to the plasma membrane, and specifically to sites of polarized growth. The yeast PAK homolog Ste20 is essential for the Sho1-dependent activation of the Hog1 MAP kinase in response to severe osmotic stress. This function of Ste20 in the HOG pathway requires binding of the small GTPase Cdc42. Overexpression of Cdc42 partially complements the osmosensitivity of ste20Delta mutants, perhaps by activating another PAK-like kinase, while a dominant-negative Cdc42 mutant inhibited signaling through the SHO1 branch of the HOG pathway. Since activated Cdc42 translocates Ste20 to sites of polarized growth, the upstream and downstream elements of the HOG pathway are brought together through the membrane targeting function of Sho1 and Cdc42.  相似文献   

12.
Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules composed of three sequentially activated kinases (MAPKKK, MAPKK and MAPK). Because individual cells contain multiple MAPK cascades, mechanisms are required to ensure the fidelity of signal transmission. In yeast, external high osmolarity activates the HOG (high osmolarity glycerol) MAPK pathway, which consists of two upstream branches (SHO1 and SLN1) and common downstream elements including the Pbs2 MAPKK and the Hog1 MAPK. The Ssk2/Ssk22 MAPKKKs in the SLN1 branch, when activated, exclusively phosphorylate the Pbs2 MAPKK. We found that this was due to an Ssk2/Ssk22-specific docking site in the Pbs2 N-terminal region. The Pbs2 docking site constitutively bound the Ssk2/Ssk22 kinase domain. Docking site mutations drastically reduced the Pbs2-Ssk2/Ssk22 interaction and hampered Hog1 activation by the SLN1 branch. Fusion of the Pbs2 docking site to a different MAPKK, Ste7, allowed phosphorylation of Ste7 by Ssk2/Ssk22. Thus, the docking site contributes to both the efficiency and specificity of signaling. During these analyses, we also found a nuclear export signal and a possible nuclear localization signal in Pbs2.  相似文献   

13.
 高渗透性甘油促分裂原激酶信号转导途径(high osmolarity glycerol mitogen activated protein kinase signaling transduction pathway,HOG-MAPK)是调控酿酒酵母对外界高渗透压胁迫环境应答的主要途径,促分裂原蛋白激酶Hog1p(MAPK Hog1p)是其中的关键性作用因子.在高渗透压刺激时,MAPK Hog1p接受信号被特异性激活并进入核内,调控相关胁迫应答基因的表达,并介导该时期细胞周期的阻滞,从而增强细胞对外界不利环境的适应能力.对胁迫条件下酿酒酵母中MAPK Hog1p作用机制的进一步研究,有利于更深入地了解哺乳动物体内逆境激发促分裂原蛋白激酶途径的功能和调控机制.  相似文献   

14.
Cells usually cope with oxidative stress by activating signal transduction pathways. In the budding yeast Sacchromyces cerevisiae, the high osmolarity glycerol (HOG) pathway has long been implicated in transducing the oxidative stress‐induced signal, but the underlying mechanisms are not well defined. Based on phosphorylation of the mitogen‐activated protein kinase (MAPK) Hog1, we reveal that the signal from hydrogen peroxide (H2O2) flows through Ssk1, the response regulator of the two‐component system of the HOG pathway. Downstream signal transduction into the HOG MAPK cascade requires the MAP kinase kinase kinase (MAP3K) Ssk2 but not its paralog Ssk22 or another MAP3K Ste11 of the pathway, culminating in Hog1 phosphorylation via the MAP2K Pbs2. When overexpressed, Ssk2 is also activated in an Ssk1‐independent manner. Unlike in mammals, H2O2 does not cause endoplasmic reticulum stress, which can activate Hog1 through the conventional unfolded protein response. Hog1 activated by H2O2 is retained in the cytoplasm, but is still able to activate the cAMP‐ or stress‐responsive elements by unknown mechanisms.  相似文献   

15.
Dominant negative PMA1 mutants render misfolded proteins that are retained in the endoplasmic reticulum (ER) and slowly degraded by ER-associated degradation. Accumulation of misfolded proteins in the ER activates an ER-to-nucleus signalling pathway termed the unfolded protein response (UPR). We have used a PMA1-D378T dominant negative mutant to analyse its impact on UPR induction. Our results show that overexpression of the misfolded mutant Pma1 does not lead to activation of the UPR. In addition, in mutants with a constitutively activated UPR the turnover rate of the mutant ATPase is not altered. To determine if the expression of the misfolded mutant protein induces some other kind of response we performed global gene expression analysis experiments in yeasts overexpressing either wild type or dominant lethal PMA1 alleles. The results suggest that the high osmolarity glycerol (Hog1) mitogen-activated protein kinase (MAPK) pathway is activated by both wild type and mutant ATPases. We show that expression of the PMA1 alleles induces phosphorylation of Hog1 and activation of the Hog1 MAPK cascade. This activation is mediated by the Sln1 branch of the stress-dependent Hog1 MAPK network. Finally, we show that at least two other plasma membrane proteins are also able to activate the Hog1 MAPK system.  相似文献   

16.
When confronted with a marked increase in external osmolarity, budding yeast (Saccharomyces cerevisiae) cells utilize a conserved mitogen-activated protein kinase (MAPK) signaling cascade (the high-osmolarity glycerol or HOG pathway) to elicit cellular responses necessary to permit continued growth. One input that stimulates the HOG pathway requires the integral membrane protein and putative osmosensor Sho1, which recruits and enables activation of the MAPK kinase kinase Ste11. In mutants that lack the downstream MAPK kinase (pbs2Delta) or the MAPK (hog1Delta) of the HOG pathway, Ste11 activated by hyperosmotic stress is able to inappropriately stimulate the pheromone response pathway. This loss of signaling specificity is known as cross talk. To determine whether it is the Hog1 polypeptide per se or its kinase activity that is necessary to prevent cross talk, we constructed a fully functional analog-sensitive allele of HOG1 to permit acute inhibition of this enzyme without other detectable perturbations of the cell. We found that the catalytic activity of Hog1 is required continuously to prevent cross talk between the HOG pathway and both the pheromone response and invasive growth pathways. Moreover, contrary to previous reports, we found that the kinase activity of Hog1 is necessary for its stress-induced nuclear import. Finally, our results demonstrate a role for active Hog1 in maintaining signaling specificity under conditions of persistently high external osmolarity.  相似文献   

17.
18.
We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus. Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1-deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 microg/ml. In the dic1-deficient strains, phosphorylated BmHog1p was not detected after exposure to 10 microg/ml of the fungicides. In response to osmotic stress (0.4 M KCl), a trace of phosphorylated BmHog1p was found in the dic1-deficient strains, whereas the band representing active BmHog1p was clearly detected in the wild-type strain. Similar results were obtained for Neurospora crassa Os-2p MAPK phosphorylation in the mutant of the group III histidine kinase gene os-1. These results indicate that group III histidine kinase positively regulates the activation of Hog1-type MAPKs in filamentous fungi. Notably, the Hog1-type MAPKs were activated at high fungicide (100 microg/ml) and osmotic stress (0.8 M KCl) levels in the histidine kinase mutants of both fungi, suggesting that another signaling pathway activates Hog1-type MAPKs in these conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号