首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ischemic stroke is a leading cause of mortality and disability worldwide. Nevertheless, its molecular mechanisms have not yet been adequately illustrated. Progranulin (PGRN) is a secreted glycoprotein with pleiotropic functions. In the present study, we found that PGRN expression was markedly reduced in mice after stroke onset through middle cerebral artery occlusion (MCAO). We also showed that necroptosis was a mechanism underlying cerebral I/R injury. Importantly, PGRN knockdown in vivo significantly promoted the infarction volume and neurological deficits scores in mice after MCAO surgery. Necroptosis induced by MCAO was further accelerated by PGRN knockdown, as evidenced by the promoted expression of phosphorylated receptor-interacting protein (RIP) 1 kinase (RIPK1), RIPK3 and mixed lineage kinase domain-like (MLKL), which was accompanied with increased expression of cleaved Caspase-8 and Caspase-3. However, PGRN over-expression was neuroprotective. Additionally, PGRN-regulated ischemic stroke was related to ROS accumulation that MCAO-mice with PGRN knockdown exhibited severe oxidative stress, as proved by the aggravated malondialdehyde (MDA) and lipid peroxidation (LPO) contents, and the decreased superoxide dismutase (SOD) activity. However, PGRN over-expression in mice with cerebral ischemia showed anti-oxidative effects. Finally, PGRN was found to attenuate oxidative damage partly via its regulatory effects on necroptosis. Therefore, promoting PGRN expression could reduced cerebral I/R-induced brain injury by suppressing neroptosis and associated reactive oxygen species (ROS) production. These data elucidated that PGRN might provide an effective therapeutic treatment for ischemic stroke.  相似文献   

3.
Yang  Lan  Ma  Yan-Mei  Shen  Xi-Lin  Fan  Yu-Cheng  Zhang  Jian-Zhong  Li  P. Andy  Jing  Li 《Neurochemical research》2020,45(8):1888-1901

Selenium has been shown to possess antioxidant and neuroprotective effects by modulating mitochondrial function and activating mitochondrial biogenesis. Our previous study has also suggested that selenium protected neurons against glutamate toxicity and hyperglycemia-induced damage by regulating mitochondrial fission and fusion. However, it is still not known whether the mitochondrial biogenesis is involved in selenium alleviating hyperglycemia-aggravated cerebral ischemia reperfusion (I/R) injury. The object of this study is to define whether selenium protects neurons against hyperglycemia-aggravated cerebral I/R injury by promoting mitochondrial biogenesis. In vitro oxygen deprivation plus high glucose model decreased cell viability, enhanced reactive oxygen species production, and meanwhile stimulated mitochondrial biogenesis signaling. Pretreated with selenium significantly decreased cell death and further activated the mitochondrial biogenesis signaling. In vivo 30 min of middle cerebral artery occlusion in the rats under hyperglycemic condition enhanced neurological deficits, enlarged infarct volume, exacerbated neuronal damage and oxidative stress compared with normoglycemic ischemic rats after 24 h reperfusion. Consistent to the in vitro results, selenium treatment alleviated ischemic damage in hyperglycemic ischemic animals. Furthermore, selenium reduced the structural changes of mitochondria caused by hyperglycemic ischemia and further promoted the mitochondrial biogenesis signaling. Selenium activates mitochondrial biogenesis signaling, protects mitochondrial structure integrity and ameliorates cerebral I/R injury in hyperglycemic rats.

  相似文献   

4.
Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10–12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss.  相似文献   

5.
Background: Increasing evidences suggest that innate immunity is involved in cerebral ischemia-reperfusion (I/R) injury, but the liable innate immune receptors have not been completely elucidated. Here, we explored the role of the nucleotide-binding oligomerization domain (NOD)2, a member of the cytosolic NOD-like receptor family, in acute focal cerebral I/R injury.Methods: An in vivo middle cerebral artery occlusion (MCAO) model that in wild type (WT) and NOD2 deficient (NOD2-/-) mice and in vitro model of oxygen glucose deprivation and reoxygenation (OGD/R) in cultured primary microglia and astrocytes were used to investigate the expression of NOD2 and explore the roles of NOD2 in ischemic stroke.Results: Our results showed that NOD2 expression was significantly increased in microglia and astrocytes in response to the I/R insult. Pretreatment with muramyl dipeptide, an extrinsic ligand of NOD2, significantly increased the infarct volume and neurological dysfunction in mice subjected to MCAO. Genetic ablation of the NOD2 gene significantly improved stroke outcomes and reduced inflammation, as evidenced by a lower expression of the pro-inflammatory cytokines IL-1β, IL-6 and TNFα in conjunction with attenuated activation of nuclear factor κB (NF-κB), p38 mitogen activated protein kinases (MAPK) and JNK. Moreover, NOD2 deficiency prevented the upregulation of the NADPH oxidase (NOX) 2 and ROS generation induced by I/R. Mechanistically, NOD2-induced production of IL-6 in primary cultured microglia was mediated through activation of NOX2.Conclusions: This study showed the contribution of NOD2 to inflammatory response and provided direct evidence that NOX2-mediated oxidative stress as an important target molecule linked NOD2 to inflammatory damage in ischemic stroke. Pharmacological targeting of NOD2-mediated inflammatory response at multiple levels may help design a new approach to develop therapeutic strategies for prevention of deterioration of cerebral function and for the treatment of stroke.  相似文献   

6.
Diabetic patients exhibit increased risk for the development of cardiovascular diseases primarily because of impaired nitric oxide (NO) bioavailability. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil restores NO signaling and protects against ischemia/reperfusion (I/R) injury. In this study, we determined the effect of the long-acting PDE-5 inhibitor tadalafil on diabetes-associated complications and its role in attenuating oxidative stress after I/R injury in type 2 diabetic db/db mice. Adult male db/db mice (n=40/group) were randomized to receive dimethyl sulfoxide (10% DMSO, 0.2 ml, ip) or tadalafil (1 mg/kg in 10% DMSO, ip) for 28 days. After 28 days treatment, the hearts were isolated and subjected to 30 min global ischemia followed by 60 min reperfusion in the Langendorff mode. Infarct size was measured using computer morphometry of tetrazolium-stained sections. Cardiomyocytes were isolated from a subset of hearts and subjected to 40 min simulated ischemia followed by 1 h of reoxygenation (SI/RO). Dichlorodihydrofluorescein diacetate and JC-1 staining was used to measure reactive oxygen species (ROS) generation and mitochondrial membrane potential (Δψm), respectively. Another subset of hearts was used for the estimation of lipid peroxidation, glutathione, and the expression of myocardial pRac1, Rac1, gp91phox, p47phox, and p67phox by Western blot. Tadalafil treatment improved the metabolic status and reduced infarct size compared to the untreated db/db mice (21.2±1.8% vs 45.8±2.8%; p<0.01). The db/db mice showed enhanced oxidative stress in cardiomyocytes as indicated by a significant increase in ROS production. Cardiac NAD(P)H oxidase activity, lipid peroxidation, and oxidized glutathione were also increased in db/db mice compared to nondiabetic control animals. Tadalafil treatment in db/db mice suppressed oxidative stress, attenuated myocardial expression of pRac1 and gp91phox, and also preserved the loss of Δψm in cardiomyocytes after SI/RO. In conclusion, these results demonstrate that chronic treatment with tadalafil attenuates oxidative stress and improves mitochondrial integrity while providing powerful cardioprotective effects in type 2 diabetes.  相似文献   

7.
8.
Autophagy, a highly conserved process conferring cytoprotection against stress, contributes to the progression of cerebral ischemia. β-arrestins are multifunctional proteins that mediate receptor desensitization and serve as important signaling scaffolds involved in numerous physiopathological processes. Here, we show that both ARRB1 (arrestin, β 1) and ARRB2 (arrestin, β 2) were upregulated by cerebral ischemic stress. Knockout of Arrb1, but not Arrb2, aggravated the mortality, brain infarction, and neurological deficit in a mouse model of cerebral ischemia. Accordingly, Arrb1-deficient neurons exhibited enhanced cell injury upon oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Deletion of Arrb1 did not affect the cerebral ischemia-induced inflammation, oxidative stress, and nicotinamide phosphoribosyltransferase upregulation, but markedly suppressed autophagy and induced neuronal apoptosis/necrosis in vivo and in vitro. Additionally, we found that ARRB1 interacted with BECN1/Beclin 1 and PIK3C3/Vps34, 2 major components of the BECN1 autophagic core complex, under the OGD condition but not normal conditions in neurons. Finally, deletion of Arrb1 impaired the interaction between BECN1 and PIK3C3, which is a critical event for autophagosome formation upon ischemic stress, and markedly reduced the kinase activity of PIK3C3. These findings reveal a neuroprotective role for ARRB1, in the context of cerebral ischemia, centered on the regulation of BECN1-dependent autophagosome formation.  相似文献   

9.
The JAK-STAT signaling pathway has been implicated in astrocyte differentiation. Both STAT1 and STAT3 are expressed in the central nervous system and are thought to be important for glial differentiation, as mainly demonstrated in vitro; however direct in vivo evidence is missing. We investigated whether STAT1 and STAT3 are essential for astrocyte development by testing the STAT responsiveness of astrocyte progenitors. STAT3 was absent in the ventricular zone where glial progenitors are born but begins to appear at the marginal zone at E16.5. At E18.5, both phospho-STAT1 and phospho-STAT3 were present in glial fibrillary acidic protein (GFAP)-expressing white matter astrocytes. Overexpression of STAT3 by electroporation of chicks in ovo induced increased numbers of astrocyte progenitors in the spinal cord. Likewise, elimination of STAT3 in Stat3 conditional knockout (cKO) mice resulted in depletion of white matter astrocytes. Interestingly, elimination of STAT1 in Stat1 null mice did not inhibit astrocyte differentiation and deletion of Stat1 failed to aggravate the glial defects in Stat3 cKO mice. Measuring the activity of STAT binding elements and the gfap promoter in the presence of various STAT mutants revealed that transactivation depended on the activity of STAT3 not STAT1. No synergistic interaction between STAT1 and STAT3 was observed. Cortical progenitors of Stat1 null; Stat3 cKO mice generated astrocytes when STAT3 or the splice variant Stat3β was supplied, but not when STAT1 was introduced. Together, our results suggest that STAT3 is necessary and sufficient for astrocyte differentiation whereas STAT1 is dispensable.  相似文献   

10.
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4 −/−) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.  相似文献   

11.
Oxidative stress has been regarded as an important underlying cause for the delayed neuronal death (DND) after cerebral ischemia. In this study, the effects of short-term oral administration of grape polyphenol extract (GPE) on ischemia/reperfusion (I/R) injury in a gerbil global ischemia model were determined. Ischemia was induced by occlusion of the common carotid arteries for 5 min. GPE (30 mg/ml)-containing formula or formula without GPE was administered daily via gavage for 4 days prior to and/or for 4 days after I/R. I/R resulted in hyperlocomotion, extensive DND, oxidative and fragmented DNA damage, and an increase in reactive astrocytes and microglial cells in the hippocampal CA1 region. GPE administration for 4 days prior to I/R and for 4 days after I/R attenuated DND, DNA damage and glial cell activation. However, neuroprotection was more pronounced when GPE was administered for 4 days after I/R than when administered for 4 days prior to I/R. GPE administration after I/R attenuated I/R-induced hyperlocomotion. These findings indicate that oral GPE intake may confer protection against I/R injury and emphasize that early intervention may be an effective therapeutic measure for ameliorating brain injury in stroke.  相似文献   

12.
Cerebrovascular diseases, including ischemic stroke, are associated with high mortality worldwide. Oxidative stress and inflammation are important pathophysiological mechanisms involved in post-ischemic cerebral injury. The present study was designed to investigate the potential protective effect of diphenyl diselenide (PhSe)2, an organoselenium compound with antioxidant and anti-inflammatory properties, against ischemia/reperfusion (I/R) insult in rat brain. The experimental model adopted was that of surgically-induced brain ischemia, performed by means of bilateral common carotid artery occlusion in rats. The effect of a single oral dose of (PhSe)2 (50 mg/kg), administered 30 min before the onset of ischemia, was investigated by assessing cerebral oxidative stress-related biochemical parameters and pro-inflammatory cytokines in plasma of rats. The results demonstrated an increase in the levels of malondialdehyde (MDA), reactive oxygen species (ROS) and nitrate/nitrite as well as the alteration in the non-enzymatic and enzymatic (catalase and superoxide dismutase) antioxidant defense system induced by I/R insult in rat brain. I/R insult increased the levels of IL-1β, IL-6, TNF-α and INF-γ in plasma of rats. The administration of (PhSe)2 restored cerebral levels of MDA, ROS, nitrate/nitrite and antioxidant defenses of rats exposed to I/R insult. (PhSe)2 markedly reduced pro-inflammatory cytokines in plasma of I/R rats. I/R insult increased the plasma levels of tissue damage markers, such as creatine kinase and α-1-acid glycoprotein. Pretreatment with (PhSe)2 was effective in reducing the levels of these proteins. In addition, (PhSe)2 attenuated cerebral histological alterations induced by I/R. This study showed for the first time the in vivo protective effect of (PhSe)2 against oxidative stress and pro-inflammatory cytokines-induced by I/R insult in rats.  相似文献   

13.
Objective and backgroundActivation of sterile inflammation after hepatic ischemia/reperfusion (I/R) culminates in liver injury. The route to liver damage starts with mitochondrial oxidative stress and cell death during early reperfusion. The link between mitochondrial oxidative stress, damage-associate molecular pattern (DAMP) release, and sterile immune signaling is incompletely understood and lacks clinical validation. The aim of the study was to validate this relation in a clinical liver I/R cohort and to limit DAMP release using a mitochondria-targeted antioxidant in I/R-subjected mice.MethodsPlasma levels of the DAMPs high-mobility group box 1 (HMGB1), mitochondrial DNA, and nucleosomes were measured in 39 patients enrolled in an observational study who underwent a major liver resection with (N = 29) or without (N = 13) intraoperative liver ischemia. Circulating cytokine and neutrophil activation markers were also determined. In mice, the mitochondria-targeted antioxidant MitoQ was intravenously infused in an attempt to limit DAMP release, reduce sterile inflammation, and suppress I/R injury.ResultsIn patients, HMGB1 was elevated following liver resection with I/R compared to liver resection without I/R. HMGB1 levels correlated positively with ischemia duration and peak post-operative transaminase (ALT) levels. There were no differences in mitochondrial DNA, nucleosome, or cytokine levels between the two groups. In mice, MitoQ neutralized hepatic oxidative stress and decreased HMGB1 release by ±50%. MitoQ suppressed transaminase release, hepatocellular necrosis, and cytokine production. Reconstituting disulfide HMGB1 during reperfusion reversed these protective effects.ConclusionHMGB1 seems the most pertinent DAMP in clinical hepatic I/R injury. Neutralizing mitochondrial oxidative stress may limit DAMP release after hepatic I/R and reduce liver damage.  相似文献   

14.
Reactive astrocytes (RA) secrete lipocalin-2 (LCN2) glycoprotein that regulates diverse cellular processes including cell death/survival, inflammation, iron delivery and cell differentiation. Elevated levels of LCN2 are considered as a biomarker of brain injury, however, the underlying regulatory mechanisms of its expression and release are not well understood. In this study, we investigated the role of astrocytic Na+/H+ exchanger 1 (NHE1) in regulating reactive astrocyte LCN2 secretion and neurodegeneration after stroke. Astrocyte specific deletion of Nhe1 in Gfap-CreER+/;Nhe1f/f mice reduced astrogliosis and astrocytic LCN2 and GFAP expression, which was associated with reduced loss of NeuN+ and GRP78+ neurons in stroke brains. In vitro ischemia in astrocyte cultures triggered a significant increase of secreted LCN2 in astrocytic exosomes, which caused neuronal cell death and neurodegeneration. Inhibition of NHE1 activity during in vitro ischemia with its potent inhibitor HOE642 significantly reduced astrocytic LCN2+ exosome secretion. In elucidating the cellular mechanisms, we found that stroke triggered activation of NADPH oxidase (NOX)-NF-κB signaling and ROS-mediated LCN2 expression. Inhibition of astrocytic NHE1 activity attenuated NOX signaling and LCN2-mediated neuronal apoptosis and neurite degeneration. Our findings demonstrate for the first time that RA use NOX signaling to stimulate LCN2 expression and secretion. Blocking astrocytic NHE1 activity is beneficial to reduce LCN2-mediated neurotoxicity after stroke.Subject terms: Cell death in the nervous system, Astrocyte  相似文献   

15.
An araban type polysaccharide (GBPw) was purified from the leaves of Ginkgo biloba. The present study aimed to investigate the protective effects of GBPw on focal ischemia/reperfusion (I/R) injury in rat brain. The results of this study demonstrated that GBPw had a positive effect on the rat brain when administered 7 days before focal cerebral I/R injury. This effect was evident with the improvements in neurological deficits, reduction in infarct volume, MDA content and the levels of pro-inflammatory cytokines (TNF-α and IL-1β), and elevation in the SOD and MPO activities and the levels of anti-inflammatory cytokine (IL-10). Thus, the beneficial effects of GBPw on cerebral I/R injury may result from the reduction of oxidative stress and the inhibition of NO production and inflammation induced by I/R. The neuroprotective effects of GBPw supplement may have potential implication in the future for prevention/protection against cerebral ischemic stroke.  相似文献   

16.
17.
Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R.  相似文献   

18.
Background and purpose: HSPA12B is a newly discovered member of the Hsp70 family proteins. This study investigated the effects of HSPA12B on focal cerebral ischemia/reperfusion (I/R) injury in mice. Methods: Transgenic mice overexpressing human HSPA12B (Tg) and wild-type littermates (WT) were subjected to 60 min of middle cerebral artery occlusion to induce ischemia and followed by reperfusion (I/R). Neurological deficits, infarct volumes and neuronal death were examined at 6 and 24 hrs after reperfusion. Blood–brain-barrier (BBB) integrity and activated cellular signaling were examined at 3 hrs after reperfusion. Results: After cerebral I/R, Tg mice exhibited improvement in neurological deficits and decrease in infarct volumes, when compared with WT I/R mice. BBB integrity was significantly preserved in Tg mice following cerebral I/R. Tg mice also showed significant decreases in cell injury and apoptosis in the ischemic hemispheres. We observed that overexpression of HSPA12B activated PI3K/Akt signaling and suppressed JNK and p38 activation following cerebral I/R. Importantly, pharmacological inhibition of PI3K/Akt signaling abrogated the protection against cerebral I/R injury in Tg mice. Conclusions: The results demonstrate that HSPA12B protects the brains from focal cerebral I/R injury. The protective effect of HSPA12B is mediated though a PI3K/Akt-dependent mechanism. Our results suggest that HSPA12B may have a therapeutic potential against ischemic stroke.  相似文献   

19.
Shi  Yuanyuan  Han  Lijian  Zhang  Xianxian  Xie  Lili  Pan  Pinglei  Chen  Fei 《Neurochemical research》2022,47(10):2992-3002

To clarify the potential role of selenium (Se) on cerebral ischemia/reperfusion (I/R) injury, we utilized mouse middle cerebral artery occlusion (MCAO) followed by reperfusion as an animal model and oxygen–glucose deprivation and reoxygenation (OGD/R) to treat N2a cells as a cell model, respectively. MCAO model was established in mice and then divided into different groups with or without Se treatment. TTC staining was used to observe whether the cerebral I/R modeling was successful, and the apoptosis level was determined by TUNEL staining. The expression of GPx-4 and p22phox was assessed by western blot. In vitro experiments, the OGD/R induced oxidative stress in N2a cells was assessed by levels of GSH/GSSG, malondialdehyde, superoxide dismutase and iron content, respectively. QRT-PCR was used to detect the mRNA levels of Cox-2, Fth1, Mfn1 and mtDNA in N2a cells. JC-1 staining and flow cytometry was performed to detect the mitochondrial membrane potential. Se treatment alleviated cerebral I/R injury and improved the survival rate of mice. Additionally, Se treatment apparently attenuated oxidative stress and inhibited iron accumulation in MCAO model mice and OGD/R model of N2a cells. In terms of its mechanism, Se could up-regulate Mfn1 expression to alleviate oxidative stress and ferroptosis by promoting mitochondrial fusion in vivo and vitro. These findings suggest that Se may have great potential in alleviating cerebral I/R injury.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号