首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying influential spreaders in networks, which contributes to optimizing the use of available resources and efficient spreading of information, is of great theoretical significance and practical value. A random-walk-based algorithm LeaderRank has been shown as an effective and efficient method in recognizing leaders in social network, which even outperforms the well-known PageRank method. As LeaderRank is initially developed for binary directed networks, further extensions should be studied in weighted networks. In this paper, a generalized algorithm PhysarumSpreader is proposed by combining LeaderRank with a positive feedback mechanism inspired from an amoeboid organism called Physarum Polycephalum. By taking edge weights into consideration and adding the positive feedback mechanism, PhysarumSpreader is applicable in both directed and undirected networks with weights. By taking two real networks for examples, the effectiveness of the proposed method is demonstrated by comparing with other standard centrality measures.  相似文献   

2.
In complex networks, it is of great theoretical and practical significance to identify a set of critical spreaders which help to control the spreading process. Some classic methods are proposed to identify multiple spreaders. However, they sometimes have limitations for the networks with community structure because many chosen spreaders may be clustered in a community. In this paper, we suggest a novel method to identify multiple spreaders from communities in a balanced way. The network is first divided into a great many super nodes and then k spreaders are selected from these super nodes. Experimental results on real and synthetic networks with community structure show that our method outperforms the classic methods for degree centrality, k-core and ClusterRank in most cases.  相似文献   

3.
Lee S  Rocha LE  Liljeros F  Holme P 《PloS one》2012,7(5):e36439
Decreasing the number of people who must be vaccinated to immunize a community against an infectious disease could both save resources and decrease outbreak sizes. A key to reaching such a lower threshold of immunization is to find and vaccinate people who, through their behavior, are more likely than average to become infected and to spread the disease further. Fortunately, the very behavior that makes these people important to vaccinate can help us to localize them. Earlier studies have shown that one can use previous contacts to find people that are central in static contact networks. However, real contact patterns are not static. In this paper, we investigate if there is additional information in the temporal contact structure for vaccination protocols to exploit. We answer this affirmative by proposing two immunization methods that exploit temporal correlations and showing that these methods outperform a benchmark static-network protocol in four empirical contact datasets under various epidemic scenarios. Both methods rely only on obtainable, local information, and can be implemented in practice. For the datasets directly related to contact patterns of potential disease spreading (of sexually-transmitted and nosocomial infections respectively), the most efficient protocol is to sample people at random and vaccinate their latest contacts. The network datasets are temporal, which enables us to make more realistic evaluations than earlier studies--we use only information about the past for the purpose of vaccination, and about the future to simulate disease outbreaks. Using analytically tractable models, we identify two temporal structures that explain how the protocols earn their efficiency in the empirical data. This paper is a first step towards real vaccination protocols that exploit temporal-network structure--future work is needed both to characterize the structure of real contact sequences and to devise immunization methods that exploit these.  相似文献   

4.
The number of people using online social networks in their everyday life is continuously growing at a pace never saw before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th (15M) movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend modern societal dynamics.  相似文献   

5.
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective.  相似文献   

6.
Clustered structure of social networks provides the chances of repeated exposures to carriers with similar information. It is commonly believed that the impact of repeated exposures on the spreading of information is nontrivial. Does this effect increase the probability that an individual forwards a message in social networks? If so, to what extent does this effect influence people’s decisions on whether or not to spread information? Based on a large-scale microblogging data set, which logs the message spreading processes and users’ forwarding activities, we conduct a data-driven analysis to explore the answer to the above questions. The results show that an overwhelming majority of message samples are more probable to be forwarded under repeated exposures, compared to those under only a single exposure. For those message samples that cover various topics, we observe a relatively fixed, topic-independent multiplier of the willingness of spreading when repeated exposures occur, regardless of the differences in network structure. We believe that this finding reflects average people’s intrinsic psychological gain under repeated stimuli. Hence, it makes sense that the gain is associated with personal response behavior, rather than network structure. Moreover, we find that the gain is robust against the change of message popularity. This finding supports that there exists a relatively fixed gain brought by repeated exposures. Based on the above findings, we propose a parsimonious model to predict the saturated numbers of forwarding activities of messages. Our work could contribute to better understandings of behavioral psychology and social media analytics.  相似文献   

7.
Biological networks, such as cellular metabolic pathways or networks of corticocortical connections in the brain, are intricately organized, yet remarkably robust toward structural damage. Whereas many studies have investigated specific aspects of robustness, such as molecular mechanisms of repair, this article focuses more generally on how local structural features in networks may give rise to their global stability. In many networks the failure of single connections may be more likely than the extinction of entire nodes, yet no analysis of edge importance (edge vulnerability) has been provided so far for biological networks. We tested several measures for identifying vulnerable edges and compared their prediction performance in biological and artificial networks. Among the tested measures, edge frequency in all shortest paths of a network yielded a particularly high correlation with vulnerability and identified intercluster connections in biological but not in random and scale-free benchmark networks. We discuss different local and global network patterns and the edge vulnerability resulting from them.  相似文献   

8.
Comparing statistical methods for constructing large scale gene networks   总被引:1,自引:0,他引:1  
Allen JD  Xie Y  Chen M  Girard L  Xiao G 《PloS one》2012,7(1):e29348
The gene regulatory network (GRN) reveals the regulatory relationships among genes and can provide a systematic understanding of molecular mechanisms underlying biological processes. The importance of computer simulations in understanding cellular processes is now widely accepted; a variety of algorithms have been developed to study these biological networks. The goal of this study is to provide a comprehensive evaluation and a practical guide to aid in choosing statistical methods for constructing large scale GRNs. Using both simulation studies and a real application in E. coli data, we compare different methods in terms of sensitivity and specificity in identifying the true connections and the hub genes, the ease of use, and computational speed. Our results show that these algorithms performed reasonably well, and each method has its own advantages: (1) GeneNet, WGCNA (Weighted Correlation Network Analysis), and ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) performed well in constructing the global network structure; (2) GeneNet and SPACE (Sparse PArtial Correlation Estimation) performed well in identifying a few connections with high specificity.  相似文献   

9.
10.
11.
Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank.  相似文献   

12.
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.  相似文献   

13.

Background

Living systems are associated with Social networks — networks made up of nodes, some of which may be more important in various aspects as compared to others. While different quantitative measures labeled as “centralities” have previously been used in the network analysis community to find out influential nodes in a network, it is debatable how valid the centrality measures actually are. In other words, the research question that remains unanswered is: how exactly do these measures perform in the real world? So, as an example, if a centrality of a particular node identifies it to be important, is the node actually important?

Purpose

The goal of this paper is not just to perform a traditional social network analysis but rather to evaluate different centrality measures by conducting an empirical study analyzing exactly how do network centralities correlate with data from published multidisciplinary network data sets.

Method

We take standard published network data sets while using a random network to establish a baseline. These data sets included the Zachary''s Karate Club network, dolphin social network and a neural network of nematode Caenorhabditis elegans. Each of the data sets was analyzed in terms of different centrality measures and compared with existing knowledge from associated published articles to review the role of each centrality measure in the determination of influential nodes.

Results

Our empirical analysis demonstrates that in the chosen network data sets, nodes which had a high Closeness Centrality also had a high Eccentricity Centrality. Likewise high Degree Centrality also correlated closely with a high Eigenvector Centrality. Whereas Betweenness Centrality varied according to network topology and did not demonstrate any noticeable pattern. In terms of identification of key nodes, we discovered that as compared with other centrality measures, Eigenvector and Eccentricity Centralities were better able to identify important nodes.  相似文献   

14.
Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans’ physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks), we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods.  相似文献   

15.
16.
Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.  相似文献   

17.
Daily courses of leaf gas exchange and chlorophyll fluorescence in forest gap and understorey environments were used to build photosynthetic networks in two pioneers and two late-successional species. Photochemical and gas exchange networks were linked to each other by the relationship between electron transport rate and net CO2 assimilation. Global network connectance (Cg), which represents the mean strength of connections within a given network, was calculated in the photochemical and gas exchange networks for both functional groups and environments. Autonomy in relation to environmental fluctuations was estimated considering the mean correlation between environmental and physiological data. Cg was consistently higher in plants under gap condition. High daily-amplitude of environmental variables in the gap induced strong connectance in photochemical and gas exchange networks regardless of functional group. Gap scenario demands network modulation with higher level of control than understorey, which would be attained by strong connections among components of photochemical and gas exchange networks. This would allow fine and fast tuning adjustments when facing highly variable and demanding environmental conditions throughout a day. As a consequence of this highly variable environment, both functional groups showed lower autonomy in the gap, where higher coupling between leaf physiology and environmental fluctuations was evident. Our results suggest that high plant–environment coupling demands high network connectance. Contrastingly, Cg was lower (especially in photochemical network) under forest understorey, promoting autonomy in a more stable environment. Our results indicate that there is a conservative pattern of photosynthesis control based on network modulation and environmental coupling. This suggests that changes in network connectance may not be specific of a functional group but rather a more general response to environmental fluctuations, strongly related to system stability. We consider this information crucial in understanding how complex adaptive systems deal with environmental fluctuations.  相似文献   

18.

Background

We study the evolutionary Prisoner''s Dilemma on two social networks substrates obtained from actual relational data.

Methodology/Principal Findings

We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates.

Conclusion

Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.  相似文献   

19.
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.  相似文献   

20.

Background

We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links.

Results

The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' – the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections – influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment.

Conclusion

A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号