首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物污垢检测技术的特点、现状与发展趋势   总被引:2,自引:0,他引:2  
微生物污垢是工业冷却水污垢的重要组成部分.在适宜条件下,引起污垢的微生物迅速繁殖.不但会显著增大污垢热阻、流动阻力和腐蚀速率,甚至还会堵塞流道而引发停机故障.本文介绍了微生物污垢的概念,阐述了微生物污垢检测技术研究的地位、作用和特点,归纳了目前已知的微生物污垢的形成过程及其主要影响因素,着重分析了目前国内外应用较广的微生物污垢检测方法、优缺点及其最新研究动态.展望了微生物污垢检测技术未来的发展趋势.  相似文献   

2.
3.
Metal oxide cathode coatings are capable of scavenging the hydrofluoric acid (HF) (present in LiPF6‐based electrolytes) and improving the electrochemical performance of Li‐ion batteries. Here, a first‐principles thermodynamic framework is introduced for designing cathode coatings that consists of four elements: i) HF‐scavenging enthalpies, ii) volumetric and iii) gravimetric HF‐scavenging capacities of the oxides, and iv) cyclable Li loss into coating components. 81 HF‐scavenging reactions involving binary s‐, p‐ and d‐block metal oxides and fluorides are enumerated and these materials are screened to find promising coatings based on attributes (i‐iv). The screen successfully produces known effective coating materials (e.g., Al2O3 and MgO), providing a validation of our framework. Using this design strategy, promising coating materials, such as trivalent oxides of d‐block transition metals Sc, Ti, V, Cr, Mn and Y, are predicted. Finally, a new protection mechanism that successful coating materials could provide by scavenging the wide bandgap and low Li ion conductivity LiF precipitates from the cathode surfaces is suggested.  相似文献   

4.
Multicopper oxidases, such as laccase or bilirubin oxidase, are known to reduce molecular oxygen at very high redox potentials, which makes them attractive biocatalysts for enzymatic cathodes in biological fuel cells. By designing an enzymatic gas‐diffusion electrode, molecular oxygen can be supplied through the gaseous phase, avoiding solubility and diffusion limitations typically associated with liquid electrolytes. In doing so, the current density of enzymatic cathodes can theoretically be enhanced. This publication presents a material study of carbon/Teflon composites that aim to optimize the functionality of the gas‐diffusion and catalytic layers for application in enzymatic systems. The modification of the catalytic layer with multiwalled carbon nanotubes, for example, creates the basis for stronger π–π stacking interactions through tethered enzymatic linkers, such as pyrenes or perylene derivates. Cyclic voltammograms show the effective direct electron contact of laccase with carbon nanotube‐modified electrodes via tethered crosslinking molecules as a model system. The polarization behavior of laccase‐modified gas‐diffusion electrodes reveals open‐circuit potentials of +550 mV (versus Ag/AgCl) and current densities approaching 0.5 mA cm2 (at zero potential) in air‐breathing mode.  相似文献   

5.
In lithium‐sulfur batteries, small S2–4 molecules show very different electrochemical responses from the traditional S8 material. Their exact lithiation/delitiation mechanism is not clear and how to select proper electrolytes for the S2–4 cathodes is also ambiguous. Here, S2–4 and S8/S2–4 composites with highly ordered microporous carbon as a confining matrix are fabricated and the electrode mechanism of the S2–4 cathode is investigated by comparing the electrochemical performances of the S2–4 and S2–4/S8 electrodes in various electrolytes combined with theoretical calculation. Experimental results show that the electrolyte and microstructure of carbon matrix play important roles in the electrochemical performance. If the micropores of carbon are small enough to prevent the penetration of the solvent molecules, the lithiation/delithiation for S2–4 occurs as a solid‐solid process. The irreversible chemically reactions between the polysulfudes and carbonates, and the dissolution of the polysulfides into the ethers can be effectively avoided due to the steric hindrance. The confined S2–4 show high adaptability to the electrolytes. The sulfur cathode based on this strategy exhibits excellent rate capability and cycling stability.  相似文献   

6.
Electrospinning is the most facile and highly versatile approach to produce 1D polymeric, inorganic, and hybrid nanomaterials with a small diameter, controllable dimensions, and designed architectures. In particular, with large surface area, high porosity, low density, good directionality, and tunable composition, electrospun nanofibers and mats are regarded as ideal candidates for various kinds of electrochemical energy storage devices such as supercapacitors (SCs). In this review, the recent progress in electrospun electrode materials for SCs is presented, covering the architecture design and their electrochemical performance. After a brief introduction about SCs, the basic principles of the electrospinning technique are discussed. Following, attention is paid to the discussion of various electrospun nanofibers and mats including 1D carbons, metal oxides, metal sulfides, metal nitrides, conducting polymers and composite nanomaterials with various types of architectures as electrodes for SCs. The relationship between the composition, architecture, and the electrochemical performance is discussed in detail. Finally, some challenges and perspectives of future research of the electrospun nanofibers and mats for high performance SCs are highlighted. It is anticipated that this review would provide the researchers some inspiration for constructing new types of energy storage devices.  相似文献   

7.
An innovative organodisulfide compound, 2,3,4,6,8,9,10,12‐Octathia biscyclopenta[b,c]‐5,11‐anthraquinone‐1,7‐dithione (TPQD), has been successfully designed, synthesized, and characterized as a cathode material for lithium batteries. A benzoquinone is introduced to coordinate with dithiolane through 1,4‐dithianes. The molecular structure, electrochemical performances, and the lithiation/delithiation mechanism of the TPQD cathode have been systematically investigated. TPQD can deliver an initial capacity of 251.7 mAh g?1 at a rate of C/10, which corresponds to the transfer of 4.7 electrons per formula. Highly reversible capacities and stable cyclic performances can be achieved at rates from C/10 to 5 C. Very interestingly, TPQD can retain a capacity of 120 mAh g?1 after 200 cycles at the 5 C rate, which is quite impressive for organodisulfide compounds. X‐ray absorption spectroscopy measurements and density functional theory calculation results suggest that such a high capacity is contributed by both O redox of the quinone group and the cleavage and recombination of the disulfide bond. Moreover, the extended π‐conjugation structure of the material, introduced by benzoquinone and dithiane, is beneficial for improving the high rate capability and cyclic stability. This study illustrates an innovative approach in designing new organodisulfide compounds with improved cyclability and rate capability as cathode materials for high performance lithium batteries.  相似文献   

8.
9.
目的 植入式脑机接口在神经疾病的治疗方面已经得到了广泛应用,治疗的效果依赖于与神经组织接触的电极。与刚性材料制作的电极相比,碳基微纤维电极尺度小、生物兼容性好、组织炎症反应小,可以减少植入后的异物反应,改善神经记录信号的信噪比,可以长期保持稳定的电极特性。方法 本文设计了一种柔性碳纳米管(carbon nanotubes,CNTs)纤维电极的修饰方法,该方法采用电化学聚合的方式可以将聚3,4-乙烯二氧噻吩(poly(3,4-ethylenedioxythiophene),PEDOT)薄膜沉积到CNTs纤维电极上,作为微电极涂层。为了证明修饰涂层在电极表面具有良好的机械稳定性,对修饰电极进行了超声处理。此外,本文将PEDOT薄膜沉积到ITO玻璃上,评价了PEDOT薄膜的生物相容性。结果 恒电流方式在CNTs纤维电极表面沉积的PEDOT涂层降低了电极的电化学阻抗,提高了电极的电化学性能,且PEDOT沉积的时间越长阻抗减少的幅度越明显。对电极进行超声处理后,电极的电化学阻抗没有产生显著变化,说明超声处理后PEDOT涂层剥离较少,证明了修饰涂层在电极表面具有良好的机械稳定性。最后,细胞实验表明,PEDOT薄膜具有与ITO导电玻璃相当的细胞相容性。结论 PEDOT薄膜可以提高CNTs纤维电极的稳定性,有望提高脑机接口系统的寿命和可靠性,具有应用于长时间记录神经电信号的前景。  相似文献   

10.

依据战略管理理论与绩效管理工具,构建医院战略绩效管理模型。在战略绩效管理架构下,设计医院战略绩效评价模型,该模型包括医院战略分析系统、医院战略绩效评价循环系统、医院战略分解与传递系统,并分析其作用机理。将绩效管理纳入医院战略管理过程,并把战略目标贯穿医院绩效管理始终。构建与医院战略相匹配的绩效评价系统,有助于促进内部运行机制的规范化建设,提升医院可持续发展能力。

  相似文献   

11.
The microbial reduction process of goethite by Shewanella decolorationis S12 was evaluated. The results showed the electron shuttle, anthraquinone-2-sulfonate (AQS), could enhance the microbial reduction. The thermodynamic and kinetic characteristics of goethite reduction by microorganisms were influenced by AQS, concentrations of iron oxide, and electron donor. Transformation between oxidized and reduced species of the electron shuttle during the microbial reduction could be newly noticed. Two interactive steps, biotic and abiotic, were involved in the microbial reduction of Fe (III) oxide mediated by electron shuttle.  相似文献   

12.
The occurrence and abundance of microbial fatty acids have been used for the identification of microorganisms in microbial communities. However, these fatty acids can also be used as indicators of substrate usage. For this, a systematic investigation of the discrimination of the stable carbon isotopes by different microorganisms is necessary. We grew 11 strains representing major bacterial and fungal species with four different isotopically defined carbon sources and determined the isotope ratios of fatty acids of different lipid fractions. A comparison of the differences of δ13C values of palmitic acid (C16:0) with the δ13C values of the substrates revealed that the isotope ratio is independent of the growth stage and that most microorganisms showed enrichment of C16:0 with 13C when growing on glycerol. With the exception of Burkholderia gladioli, all microorganism showed depletion of 13C in C16:0 while incorporating the carbons of glucose, and most of them were enriched with 13C from mannose, with the exception of Pseudomonas fluorescens and the Zygomycotina. Usually, the glycolipid fractions are depleted in 13C compared to the phospholipid fractions. The δ13C pattern was not uniform within the different fatty acids of a given microbial species. Generally, tetradecanoic acid (C14:0) was depleted of 13C compared to palmitic acid (C16:0) while octadecanoic acid (C18:0) was enriched. These results are important for the calibration of a new method in which δ13C values of fatty acids from the environment delineate the use of bacterial substrates in an ecosystem.  相似文献   

13.
The maintenance of chromosome integrity is crucial for genetic stability. However, programmed chromosome fragmentations are known to occur in many organisms, and in the ciliate Tetrahymena the five germline chromosomes are fragmented into hundreds of minichromosomes during somatic nuclear differentiation. Here, we showed that there are different fates of these minichromosomes after chromosome breakage. Among the 326 somatic minichromosomes identified using genomic data, 50 are selectively eliminated from the mature somatic genome. Interestingly, many and probably most of these minichromosomes are eliminated during the growth period between 6 and 20 doublings right after conjugation. Genes with potential conjugation-specific functions are found in these minichromosomes. This study revealed a new mode of programmed DNA elimination in ciliates similar to those observed in parasitic nematodes, which could play a role in developmental gene regulation.  相似文献   

14.
Tomographic reconstruction has been well established as a valuable tool in the analysis of polymer electrolyte fuel cell (PEMFC) electrodes. While forays have been made into applying it to polymer electrolyte water electrolyzer (PEMWE) electrodes, CO2 electrolyzer electrodes are still new ground. Here a tomographic analysis of an electrochemical CO2 reduction gas diffusion electrode by means of focused ion beam scanning electron microscope tomography is presented. The reconstruction shows a porosity of 68%. While most of the porosity is on the nanoscale, a broad tail of micropores is observed in the distribution. The spatial distribution of the pores is nonuniform. The large pores are concentrated in the center of the layer in the through‐plane direction. From the reconstruction, an effective diffusivity factor of 0.5 for the catalyst layer is calculated. The Knudsen number of 0.19 obtained from the later shows that the diffusion is mostly in the bulk regime. Flooding of the catalyst layer is likely to decrease the effective diffusivity factor substantially.  相似文献   

15.
The presence of high concentrations of sulfate, iron, and hydrogen (acid) ions in drainage from coal mines and other areas containing waste pyritic materials is a serious water pollution problem. Sulfate can be removed from solution by microbial reduction to sulfide and subsequent precipitation as FeS. A mixed culture of microorganisms degraded wood dust cellulose, and the degradation products served as carbon and energy sources for sulfate-reducing bacteria. Metabolism of carbon compounds resulted in a net pH increase in the system. Oxidation-reduction potential (Eh) and temperature and carbon supplements were studied in an effort to accelerate the sulfate reduction process, with the ultimate objective of utilizing the process as a pollution abatement procedure.  相似文献   

16.
A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35°C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.  相似文献   

17.
A wide spectrum of electrode potentials of minerals that compose sulfide ores enables the latter, when in contact with hydrothermal solutions, to form galvanic pairs with cathode potentials sufficient for electrochemical reduction of CO2. The experiments performed demonstrated the increase of cathode current on the rotating pyrite disc electrode in a range of potentials more negative than -800 mV in presence of CO2. In high-pressure experiments performed in a specially designed electrochemical cell equipped with a pyrite cathode and placed into autoclave, accumulation of formate was demonstrated after 24 hr passing of CO2 (50 atm, room temperature) through electrolyte solution. The formation of this product started on increasing the cathode potential to -800 mV (with respect to saturated silver chloride electrode). The yield grew exponentially upon cathode potential increase up to -1200 mV. The maximum current efficiency (0.12%) was registered at cathode potentials of about -1000 mV. No formate production was registered under normal atmospheric pressure and in the absence of imposed cathode potential. Neither in experiments, nor in control was formaldehyde found. It is proposed that the electrochemical reduction of CO2 takes part in the formation of organic molecules in hydrothermal solutions accompanying sulfide ore deposits and in 'black smokers' on the ocean floor.  相似文献   

18.
Knowledge on soil microbial respiration (SMR) rates and thus soil-related CO2 losses from Arctic soils is vital because of the crucial importance of this ecosystem within the global carbon (C) cycle and climate system. Here, we measured SMR from various habitats during the growing season in Russian subarctic tundra by applying two different approaches: 14C partitioning approach and root trenching. The variable habitats encompassed peat and mineral soils, bare and vegetated surfaces and included both dry and moist ones. The field experiment was complemented by laboratory studies to measure bioavailability of soil carbon and identify sources of CO2. Differences in bioavailability of soils, measured in the laboratory as basal soil respiration rates, were generally greater than inter-site differences in SMR rates measured in situ, suggesting secondary constraints at field conditions, such as soil C content. There was a tendency towards lower SMR in vegetated peat plateaus compared to upland mineral tundra (on average 137 vs. 185 g CO2 m?2 growing season?1, respectively), but no significant differences were found. Surprisingly, the bare surfaces (peat circles) with 3500-year-old C at the surface exhibited about the largest SMR among all sites as shown by both methods. This was related to the general development of peat plateaus in the region, and uplifting of deeper peat with high C content to the surface during the genesis of peat circles. This observation is particularly relevant for decomposition of deeper peat in vegetated peat plateaus, where soil material similar to the bare surfaces can be found. The data indicate that the large stocks of C stored in permafrost peatlands are principally available for decomposition despite old age.  相似文献   

19.
Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (VV). The bacterium reduces VV (vanadate ion) to VIV (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a VIV-containing solid.  相似文献   

20.
A novel PhosphorImager-based technique which can be used to quantify low concentrations of radionuclides is described. The technique offers several benefits, combining very high sensitivity with containment of the radioisotope in the solid state, thus minimizing disposal procedures. In this study, it was used in conjunction with paper chromatography to quantify different oxidation states of (sup99)Tc in solution. The technique was used to evaluate the potential of anaerobic cultures of Shewanella putrefaciens and Geobacter metallireducens (bacteria with known metal-reducing capabilities) to reduce highly soluble Tc(VII) to insoluble lower-valence species, facilitating its removal from solution. Both organisms reduced Tc(VII), but profiles of Tc species produced in culture supernatants were strain specific. S. putrefaciens produced Tc(V), Tc(IV), and one unidentified species, but no Tc was removed from solution. G. metallireducens removed 70% of the 250 (mu)M Tc added in solution, with trace amounts of Tc(V) and the unidentified species detected in culture supernatants. Possible uses for these organisms in the bioremediation of Tc-contaminated waters are discussed, and other uses of the PhosphorImager technique are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号