首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the amyloid dye thioflavin-T (ThT) is among the most widely used tools in the study of amyloid fibrils, the mechanism by which ThT binds to fibrils and other β-rich peptide self-assemblies remains elusive. The development of the water-soluble peptide self-assembly mimic (PSAM) system has provided a set of ideal model proteins for experimentally exploring the properties and minimal dye-binding requirements of amyloid fibrils. PSAMs consist of a single-layer β-sheet (SLB) capped by two globular domains, which capture the flat, extended β-sheet features common among fibril-like surfaces. Recently, a PSAM that binds to ThT with amyloid-like affinity (low micromolar Kd) has been designed, and its crystal structure in the absence of bound ThT was determined. This PSAM thus provides a unique opportunity to examine the interactions of ThT with a β-rich structure. Here, we present molecular dynamics simulations of the binding of ThT to this PSAM β-sheet. We show that the primary binding site for ThT is along a shallow groove formed by adjacent Tyr and Leu residues on the β-sheet surface. These simulations provide an atomic-scale rationale for this PSAM's experimentally determined dye-binding properties. Together, our results suggest that an aromatic-hydrophobic groove spanning across four consecutive β-strands represents a minimal ThT binding site on amyloid fibrils. Grooves formed by aromatic-hydrophobic residues on amyloid fibril surfaces may therefore offer a generic mode of recognition for amyloid dyes.  相似文献   

2.
International Journal of Peptide Research and Therapeutics - To evaluate the effect of phage-displayed TGF-β1 model peptide on cutaneous wound healing in streptozotocin-induced diabetic rats....  相似文献   

3.
Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.  相似文献   

4.
5.
Previous studies indicate that ethanol can modulate glycine receptors (GlyR), in part, through Gβγ interaction with basic residues in the intracellular loop. In this study, we show that a seven-amino acid peptide (RQHC7), which has the primary structure of a motif in the large intracellular loop of GlyR (GlyR-IL), was able to inhibit the ethanol-elicited potentiation of this channel from 47 ± 2 to 16 ± 4%, without interfering with the effect of Gβγ on GIRK (G protein activated inwardly rectifying potassium channel) activation. RQHC7 displayed a concentration-dependent effect on ethanol action in evoked and synaptic currents. A fragment of GlyR-IL without the basic amino acids did not interact with Gβγ or inhibit ethanol potentiation of GlyR. In silico analysis using docking and molecular dynamics allowed to identify a region of ∼350Å2 involving aspartic acids 186, 228, and 246 in Gβγ where we propose that RQHC7 binds and exerts its blocking action on the effect of ethanol in GlyR.  相似文献   

6.
SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands.  相似文献   

7.
8.
9.
Binding of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF) initiates platelet adhesion to disrupted vascular surface under arterial blood flow. Flow exerts forces on the platelet that are transmitted to VWF-GPIbα bonds, which regulate their dissociation. Mutations in VWF and/or GPIbα may alter the mechanical regulation of platelet adhesion to cause hemostatic defects as found in patients with von Willebrand disease (VWD). Using a biomembrane force probe, we observed biphasic force-decelerated (catch) and force-accelerated (slip) dissociation of GPIbα from VWF. The VWF A1 domain that contains the N-terminal flanking sequence Gln1238–Glu1260 (1238-A1) formed triphasic slip-catch-slip bonds with GPIbα. By comparison, using a short form of A1 that deletes this sequence (1261-A1) abolished the catch bond, destabilizing its binding to GPIbα at high forces. Importantly, shear-dependent platelet rolling velocities on these VWF ligands in a flow chamber system mirrored the force-dependent single-bond lifetimes. Adding the Gln1238–Glu1260 peptide, which interacted with GPIbα and 1261-A1 but not 1238-A1, to whole blood decreased platelet attachment under shear stress. Soluble Gln1238–Glu1260 reduced the lifetimes of GPIbα bonds with VWF and 1238-A1 but rescued the catch bond of GPIbα with 1261-A1. A type 2B VWD 1238-A1 mutation eliminated the catch bond by prolonging lifetimes at low forces, a type 2M VWD 1238-A1 mutation shifted the respective slip-catch and catch-slip transition points to higher forces, whereas a platelet type VWD GPIbα mutation enhanced the bond lifetime in the entire force regime. These data reveal the structural determinants of VWF activation by hemodynamic force of the circulation.  相似文献   

10.
International Journal of Peptide Research and Therapeutics - To isolate key sequences of transforming growth factor-beta 1 (TGF-β1) from the phage display 12-mer peptide library, synthesize...  相似文献   

11.
TAT-RasGAP317–326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317–326 sequence for the anticancer activities of TAT-RasGAP317–326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317–326.  相似文献   

12.
The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site.  相似文献   

13.
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a "peptide self-assembly mimic” (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimic a segment of β-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM β-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the β-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more β-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.  相似文献   

14.
Pittsburgh compound B (PIB) is a neutral derivative of the fluorescent dye Thioflavin T (ThT), which displays enhanced hydrophobicity and binding affinity to amyloid fibrils. We present molecular dynamics simulations of binding of PIB and ThT to a common cross-β-subunit of the Alzheimer Amyloid-β peptide (Aβ). Our simulations of binding to Aβ9-40 protofibrils show that PIB, like ThT, selectively binds to the hydrophobic or aromatic surface grooves on the β-sheet surface along the fibril axis. The lack of two methyl groups and charge in PIB not only improves its hydrophobicity but also leads to a deeper insertion of PIB compared to ThT into the surface grooves. This significantly increases the steric, aromatic, and hydrophobic interactions, and hence leads to stronger binding. Simulations on protofibrils consisting of the more-toxic Aβ17-42 revealed an additional binding mode in which PIB and ThT insert into the channel that forms in the loop region of the protofibril, sandwiched between two sheet layers. Our simulations indicate that the rotation between the two ring parts of the dyes is significantly more restricted when the dyes are bound to the surface of the cross-β-subunits or to the channel inside the Aβ17-42 cross-β-subunit, compared with free solution. The specific conformations of the dyes are influenced by small chemical modifications (ThT versus PIB) and by the environment in which the dye is placed.  相似文献   

15.
Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (Kd) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution Kd for BoNT/A Lc of 1.47 × 10− 10 M and an IC50 (50% inhibitory concentration) of 4.7 × 10− 10 M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 Å resolution. The structure reveals that the Aa1 VHH binds in the α-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc α-exosite as a target for inhibitor development.  相似文献   

16.
We previously demonstrated that the naturally occurring splice variant stromal cell-derived factor 1γ/CXCL12γ is the most potent CXCL12 isoform in blocking X4 HIV-1, with weak chemotactic activity. A conserved BBXB domain (B for basic and X for any residue) located in the N terminus (24KHLK27) is found in all six isoforms of CXCL12. To determine whether the potent antiviral activity of CXCL12γ is due to the presence of the extra C-terminal BBXB domains, we mutated each domain individually as well as in combination. Although binding of CXCL12γ to heparan sulfate proteoglycan (HSPG) was 10-fold higher than that observed with CXCL12α, the results did not demonstrate a direct correlation between HSPG binding and the potent antiviral activity. CXCL12γ mutants lacking the conserved BBXB domain (designated γB1) showed increased binding to HSPG but reduced anti-HIV activity. In contrast, the mutants lacking the C-terminal second and/or third BBXB domain but retaining the conserved domain (designated B2, B3, and B23) showed decreased binding to HSPG but increased anti-HIV activity. The B2, B3, and B23 mutants were associated with enhanced CXCR4 binding, receptor internalization, and restored chemotaxis. Internalization of CXCR4 was more potent with CXCL12γ than with CXCL12α and was significantly reduced when the conserved BBXB domain was mutated. We concluded that the observed potent anti-HIV-1 activity of CXCL12γ is due to increased affinity for CXCR4 and to efficient receptor internalization.Chemokines are small, structurally related chemoattractant cytokines characterized by conserved cysteine residues. Based on the positions of the first N-terminal cysteines, chemokines fall into four subfamilies. The CC and CXC subfamilies have been well characterized. The CC subfamily includes the following: regulated on activation, normal T-cell expressed and secreted (RANTES), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory peptides 1 (MIP-1). The prototype of the CXC subfamily is interleukin-8 (IL-8)/CXCL8. The C chemokine (lymphotactine) and CX3C chemokine (fractalkine) subfamilies were recently identified (reviewed in reference 30). The physiological activities of chemokines are mediated by the selective recognition and activation of chemokine receptors belonging to the seven-membrane-domain G-protein-coupled receptor superfamily (GPCRs). In addition, chemokines also bind to glycosaminoglycans (GAGs) through distinct binding sites. Chemokine binding to GAGs on cells, particularly endothelial cells, results in chemotactic chemokine gradients that allow correct presentation of chemokines to leukocytes, therefore enabling target cells to cross the endothelial barrier and migrate into tissues (reviewed in reference 10).Stromal cell-derived factor 1 (SDF-1)/CXCL12 is a member of the CXC chemokine family and is a key regulator of B-cell lymphopoiesis, hematopoietic stem cell mobilization, and leukocyte migration (reviewed in reference 10). CXCL12 was originally thought to mediate these processes through the single receptor CXCR4 (9). However, later studies demonstrated that RDC-1/CXCR7 is also a receptor for CXCL12 (6, 11). CXCL12 has also been shown to block HIV-1 infection (5). There are two known human splice variants of CXCL12, referred to as CXCL12α and CXCL12β (27). The genomic structure of the CXCL12 gene revealed that human CXCL12α and CXCL12β are encoded by a single gene and arise by alternative splicing. The cDNAs corresponding to CXCL12α and CXCL12β encode proteins of 89 and 93 amino acids, respectively. A third splice variant, classified as CXCL12γ, has been identified in rats (14). The human equivalent of CXCL12γ was recently identified among other splice variants of CXCL12 (33). The novel human splice variants CXCL12γ, CXCL12ɛ, CXCL12δ, and CXCL12θ (also reported as CXCL12ϕ [33]) are expressed through alternative splicing events that result in different exons being added to the same first three exons. Therefore, all six splice variants of CXCL12 are identical in the first 88 amino acid residues from the amino terminus.It has been demonstrated that CXCL12α and -β are expressed in numerous tissues, with the highest expression levels in the liver, pancreas, and spleen (33). The mRNA encoding CXCL12γ was detectable in the adult human heart but hardly detectable in several other tissues. On the other hand, CXCL12δ, -ɛ, and -θ could be detected in several human adult and fetal tissues, with the pancreas expressing the highest levels (33). Recent studies have demonstrated the tissue expression of CXCL12γ in the adult heart (24). We previously demonstrated that CXCL12γ is the most potent anti-HIV-1 inhibitor, with the weakest chemotactic activity and no detectable enhancing activity for hematopoietic progenitor cell survival or replating capacity (2). The first three exons present in the CXCL12γ splice variant are identical to those found in CXCL12α and CXCL12β. The fourth exon, however, contains a large number of basic residues that result in at least four additional BBXB domains in addition to the conserved 24KHLK27 domain (33). It is not known whether the additional BBXB domains in the C terminus of CXCL12γ result in higher affinity for heparan sulfate proteoglycan (HSPG) and whether differences in HSPG binding could explain the observed anti-HIV-1 potency or the low chemotactic activity.The BBXB motif on RANTES has been suggested as the principal site for high-affinity binding to heparan sulfate. This binding controls receptor selectivity (22). It was previously demonstrated that a mutation of CXCL12α in the 24KHLK27 domain reduces the antiviral activity at least 50 percent without affecting the chemotactic activity (4, 29). It was proposed that chemokine binding to HSPG might concentrate the chemokine near the CXCR4 receptor or form a haptotactic chemokine gradient.In this study, we analyzed the mechanism of the potent antiviral activity of CXCL12γ. We examined the role of the additional BBXB domains of CXCL12γ in the observed biological activities of CXCL12γ. Mutations in CXCL12γ were introduced to knock out the BBXB domains either individually or in combination. We analyzed receptor internalization and binding affinities of the mutant chemokines for CXCR4 and HSPG. The results demonstrate that the potent anti-HIV activity of CXCL12γ is due to its efficient binding and internalization of CXCR4. The results provide important insight into the structure-function relationship of CXCL12γ and suggest that determinants other than the BBXB domains are involved in the observed biological activities of CXCL12γ.  相似文献   

17.
18.
Abstract

The Aβ(1–42) peptide of Alzheimer's disease was studied by molecular modeling. The coordinates of the peptide were experimentally generated from solution-NMR spectroscopy, and the conformations were energy minimized using a combination of connectivity-based iterative partial equalization of orbital electronegativity with the MM + force field.

There is a central folded domain in the Aβ peptide. This part is an apolar α-helix. The remaining residues form β-sheets. Aggregation requires that β-sheets interact by noncovalent bonding forces. The unsoluble, aggregated complexes are energetically stable and have ordered structures.

A perspective in drug research is to design compounds that inhibit the hydrophobic cores of the individual Aβ peptides, blocking so the associations between the β-strains.  相似文献   

19.

Antimicrobial peptides (AMPs) are molecules present in several life forms, possess broad-spectrum of inhibitory activity against pathogenic microorganisms, and are a promising alternative to combat the multidrug resistant pathogens. The aim of this work was to identify and characterize AMPs from Capsicum chinense fruits and to evaluate their inhibitory activities against yeasts of the genus Candida and α-amylases. Initially, after protein extraction from fruits, the extract was submitted to anion exchange chromatography resulting two fractions. Fraction D1 was further fractionated by molecular exclusion chromatography, and three fractions were obtained. These fractions showed low molecular mass peptides, and in fraction F3, only two protein bands of approximately 6.5 kDa were observed. Through mass spectrometry, we identified that the lowest molecular mass protein band of fraction F3 showed similarity with AMPs from plant defensin family. We named this peptide CcDef3 (Capsicum chinense defensin 3). The antifungal activity of these fractions was analyzed against yeasts of the genus Candida. At 200 μg/mL, fraction F1 inhibited the growth of C. tropicalis by 26%, fraction F2 inhibited 35% of the growth of C. buinensis, and fraction F3 inhibited all tested yeasts, exhibiting greater inhibition activity on the growth of the yeast C. albicans (86%) followed by C. buinensis (69%) and C. tropicalis (21%). Fractions F1 and F2 promoted membrane permeabilization of all tested yeasts and increased the endogenous induction of reactive oxygen species (ROS) in C. buinensis and C. tropicalis, respectively. We also observed that fraction F3 at a concentration of 50 µg/mL inhibited the α-amylase activities of Tenebrio molitor larvae by 96% and human salivary by 100%. Thus, our results show that fraction F3, which contains CcDef3, is a very promising protein fraction because it has antifungal potential and is able to inhibit the activity of different α-amylase enzymes.

  相似文献   

20.

Background

TGF-β1 controls many pathophysiological processes including tissue homeostasis, fibrosis, and cancer progression. Together with its latency-associated peptide (LAP), TGF-β1 binds to the latent TGF-β1-binding protein-1 (LTBP-1), which is part of the extracellular matrix (ECM). Transmission of cell force via integrins is one major mechanism to activate latent TGF-β1 from ECM stores. Latent TGF-β1 mechanical activation is more efficient with higher cell forces and ECM stiffening. However, little is known about the molecular events involved in this mechanical activation mechanism.

Results

By using single-molecule force spectroscopy and magnetic microbeads, we analyzed how forces exerted on the LAP lead to conformational changes in the latent complex that can ultimately result in TGF-β1 release. We demonstrate the unfolding of two LAP key domains for mechanical TGF-β1 activation: the α1 helix and the latency lasso, which together have been referred to as the “straitjacket” that keeps TGF-β1 associated with LAP. The simultaneous unfolding of both domains, leading to full opening of the straitjacket at a force of ∼40 pN, was achieved only when TGF-β1 was bound to the LTBP-1 in the ECM.

Conclusions

Our results directly demonstrate opening of the TGF-β1 straitjacket by application of mechanical force in the order of magnitude of what can be transmitted by single integrins. For this mechanism to be in place, binding of latent TGF-β1 to LTBP-1 is mandatory. Interfering with mechanical activation of latent TGF-β1 by reducing integrin affinity, cell contractility, and binding of latent TGF-β1 to the ECM provides new possibilities to therapeutically modulate TGF-β1 actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号