首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an unusual economically important aquaculture species, Sinonovacula constricta possesses high levels of long-chain polyunsaturated fatty acids (LC-PUFA). Previously, our group identified fatty acyl desaturases (Fad) with Δ5 and Δ6 activities in S. constricta, which was the first report of Δ6 Fad in a marine mollusc. Here, we further successfully characterize elongases of very long-chain fatty acids (Elovl) in this important bivalve species, including one Elovl2/5, two Elovl4 isoforms (a and b) and a novel Elovl (c) with Elovl4 activity. In addition, we also determined the desaturation activity of S. constricta Δ6 Fad toward 24:5n-3 to give 24:6n-3, a key intermediate in docosahexaenoic acid (DHA) biosynthesis. Therefore, S. constricta is the first marine mollusc reported to possess all Fad and Elovl activities required for LC-PUFA biosynthesis via the ‘Sprecher pathway’. This finding greatly increases our understanding of LC-PUFA biosynthesis in marine molluscs. Phylogenetic analysis by interrogating six marine molluscan genomes, and previously functionally characterized Elovl and Fad from marine molluscs, suggested that DHA biosynthetic ability was limited to a few species, due to the general lack of Δ4 or Δ6 Fad in most molluscs.  相似文献   

2.
3.
For vertebrates, the adequate supply of polyunsaturated fatty acids (PUFA) by the diet, in particular ω3 long-chain PUFA, is considered essential for neural development, growth and reproduction. In contrast to aquatic ecosystems, ω3 long-chain PUFA apparently are not widely available in the terrestrial food chain. Their de novo synthesis requires the presence of Δ12 and ω3 fatty acid desaturase enzymes, which are absent in vertebrates but present, for example, in the nematode Caenorhabditis elegans (FAT-2 and FAT-1). This raises the question if soil-dwelling nematodes offer substantial supply of these valuable nutritional compounds in terrestrial food webs. BLAST searches in available nematode genomes revealed the existence of fat-2 like genes in almost all clade III–V species, but failed to identify orthologs in clade I–II nematodes. An additional RT-PCR screen across soil-dwelling nematode species identified six novel fat-2 like genes. Hints for the genetic basis of a ω3 (fat-1) desaturase activity was found only in selected clade IV–V species, but not in clades I to III nematodes. Fatty acid pattern analyses following a PUFA-free cultivation and enzymatic characterization of six selected fat-2 or fat-1 like desaturases in yeast confirmed the findings from the genetic approaches. Thus, in similar soil habitats, taxa exist that can synthesize ω3 long-chain PUFA (as Panagrolaimus, Mesorhabditis and Caenorhabditis) whereas others are unable to do so (Acrobeloides, Cephalobus and Oscheius). While these nematodes do not differ in trophic position or major diet, distinction in reproduction mode may have led to the observed variations in desaturase genes.  相似文献   

4.
5.
The interest in understanding the capacity of aquatic invertebrates to biosynthesise omega-3 (ω3) long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) has increased in recent years. Using the common octopus Octopus vulgaris as a model species, we previously characterised a ∆5 desaturase and two elongases (i.e. Elovl2/5 and Elovl4) involved in the biosynthesis of LC-PUFA in molluscs. The aim of this study was to characterise both molecularly and functionally, two methyl-end (or ωx) desaturases that have been long regarded to be absent in most animals. O. vulgaris possess two ωx desaturase genes encoding enzymes with ∆12 and ω3 regioselectivities enabling the de novo biosynthesis of the C18 PUFA 18:2ω6 (LA, linoleic acid) and 18:3ω3 (ALA, α-linolenic acid), generally regarded as dietary essential for animals. The O. vulgaris ∆12 desaturase (“ωx2”) mediates the conversion of 18:1ω9 (oleic acid) into LA, and subsequently, the ω3 desaturase (“ωx1”) catalyses the ∆15 desaturation from LA to ALA. Additionally, the O. vulgaris ω3 desaturase has ∆17 capacity towards a variety of C20 ω6 PUFA that are converted to their ω3 PUFA products. Particularly relevant was the affinity of the ω3 desaturase towards 20:4ω6 (ARA, arachidonic acid) to produce 20:5ω3 (EPA, eicosapentaenoic acid), as supported by yeast heterologous expression, and enzymatic activity exhibited in vivo when paralarvae were incubated in the presence of [1-14C]20:4ω6. These results confirmed that several routes enabling EPA biosynthesis are operative in O. vulgaris whereas ARA and docosahexaenoic acid (DHA, 22:6ω3) should be considered essential fatty acids since endogenous production appears to be limited.  相似文献   

6.
Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.  相似文献   

7.
Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.  相似文献   

8.
9.
Flax (Linum usitatissimum L.) is one of the richest plant sources of omega-3 fatty acids praised for their health benefits. In this study, the extent of the genetic variability of genes encoding stearoyl-ACP desaturase (SAD), and fatty acid desaturase 2 (FAD2) and 3 (FAD3) was determined by sequencing the six paralogous genes from 120 flax accessions representing a broad range of germplasm including some EMS mutant lines. A total of 6 alleles for sad1 and sad2, 21 for fad2a, 5 for fad2b, 15 for fad3a and 18 for fad3b were identified. Deduced amino acid sequences of the alleles predicted 4, 2, 3, 4, 6 and 7 isoforms, respectively. Allele frequencies varied greatly across genes. Fad3a, with 110 SNPs and 19 indels, and fad3b, with 50 SNPs and 5 indels, showed the highest levels of genetic variations. While most of the SNPs and all the indels were silent mutations, both genes carried nonsense SNP mutations resulting in premature stop codons, a feature not observed in sad and fad2 genes. Some alleles and isoforms discovered in induced mutant lines were absent in the natural germplasm. Correlation of these genotypic data with fatty acid composition data of 120 flax accessions phenotyped in six field experiments revealed statistically significant effects of some of the SAD and FAD isoforms on fatty acid composition, oil content and iodine value. The novel allelic variants and isoforms identified for the six desaturases will be a resource for the development of oilseed flax with unique and useful fatty acid profiles.  相似文献   

10.
11.
The Fad12 mutant of Synechocystis sp. PCC 6803 has a defect in the desA gene for Δ12 acyl-lipid desaturase. We identified a change in the nucleotide sequence of the structural gene for the desaturase, in which a leucine codon has been converted to a stop codon. Western blot analysis revealed that the Δ12 acyl-lipid desaturase was localized in both plasma membranes and thylakoid membranes of wild-type cells but was absent from both types of membrane in Fad12 cells. These findings suggest that the desaturation of fatty acids takes place in both types of membrane in Synechocystis sp. PCC 6803. The mutation in the Δ12 desaturase did not affect the lipid composition of thylakoid and plasma membranes, but it changed the fatty acid composition of lipids in similar ways in both types of membrane.  相似文献   

12.
13.
The synthesis of long chain polyunsaturated fatty acids (LCPUFA), such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), involves fatty acyl desaturase and elongase enzymes. The marine fish species southern bluefin tuna (SBT) can accumulate large quantities of omega-3 (n-3) LCPUFA in its flesh but their capacity to synthesize EPA and DHA is uncertain. A cDNA, sbtElovl5, encoding a putative fatty acyl elongase was amplified from SBT liver tissue. The cDNA included an open reading frame (ORF) encoding 294 amino acids. Sequence comparisons and phylogenetic analyses revealed a high level of sequence conservation between sbtElovl5 and fatty acyl elongase sequences from other fish species. Heterologous expression of the sbtElovl5 ORF in Saccharomyces cerevisiae confirmed that it encoded a fatty acyl elongase capable of elongating C18/20 polyunsaturated fatty acid (PUFA) substrates, but not C22 PUFA substrates. For the first time in an Elovl5, the substrate competition occurring in nature was investigated. Higher activity towards n-3 PUFA substrates than omega-6 (n-6) PUFA substrates was exhibited, regardless of substrate chain length. The sbtElovl5 preferentially elongated 18:4n-3 and 18:3n-6 rather than 20:5n-3 and 20:4n-6. The sbtElovl5 enzyme also elongated saturated and monounsaturated fatty acids.  相似文献   

14.
15.
16.
17.
Unsaturated fatty acids (UFAs), including oleic acid (OA, C18:1n-9), linoleic acid (LA, C18:2n-6) and α-linolenic acid (ALA, C18:3n-3), are major components of membrane lipids in Pichia pastoris GS115. In order to clarify the biosynthesis pathway of UFAs on the molecular level and investigate their possible roles in growth and development of this strain, we here report modified strains with disrupted desaturase gene by homologous recombination. Gas chromatography analysis of fatty acid composition in the corresponding mutants confirmed that ?12-desaturase encoded by Fad12 was responsible for the formation of LA, and ALA was synthesized by ?15-desaturase encoded by Fad15. Simultaneous deletion of Fad9A and Fad9B was lethal and supplementation of OA could restore growth, indicating that possibly both Fad9A and Fad9B encoded ?9-desaturase that converted SA into OA. Phenotypic analysis demonstrated that wild type and Fad15 mutant grew at almost the same rate, Fad12 mutant grew much slower than these two strains. Moreover, OA was positively correlated to cold tolerance and ethanol tolerance of GS115, whereas LA and ALA did not affect cold tolerance and ethanol tolerance of it. In addition, we showed that tolerance of GS115 to high concentration of methanol was independent of these three UFAs.  相似文献   

18.
The insect SNMP gene family   总被引:1,自引:0,他引:1  
SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species.  相似文献   

19.
ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12–16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6−/− mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6−/− mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6−/− islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes.  相似文献   

20.
Elongation of very long chain fatty acid-like family member 6 (ELOVL6) is a fatty acyl elongase that performs the initial and rate-limiting condensing reaction required for microsomal elongation of long-chain fatty acids. Our previous in vitro studies suggested that ELOVL6 elongated long-chain saturated fatty acids and monounsaturated fatty acids with chain lengths of 12 to 16 carbons. Here, we describe the generation and phenotypic characterization of Elovl6−/− mice. As predicted from the in vitro studies, livers from Elovl6−/− mice accumulated palmitic (C16:0) and palmitoleic (C16:1, n-7) fatty acids and contained significantly less stearic (C18:0) and oleic (C18:1, n-9) acids, confirming that ELOVL6 is the only enzyme capable of elongating palmitate (C16:0). Unexpectedly, Elovl6−/− mice produced vaccenic acid (C18:1, n-7), the elongated product of palmitoleate (C16:1, n-7), suggesting that palmitoleate (C16:1, n-7) to vaccenate (C18:1, n-7) elongation was not specific to ELOVL6. The only detected consequence of deleting Elovl6−/− in mice was that their livers accumulated significantly more triglycerides than wild-type mice when fed a fat-free/high-carbohydrate diet. When mice were fed a high-fat diet or ELOVL6 was deleted in ob/ob mice, the absence of ELOVL6 did not alter the development of obesity, fatty liver, hyperglycemia, or hyperinsulinemia. Combined, these results suggest that palmitoleic (C16:1, n-7) and vaccenic (C18:1, n-7) acids can largely replace the roles of oleic acid (C18:1, n-9) in vivo and that the deletion of ELOVL6 does not protect mice from the development of hepatic steatosis or insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号