首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decline of both managed and wild bee populations has been extensively reported for over a decade now, with growing concerns amongst the scientific community. Also, evidence is growing that both managed and feral honey bees may exacerbate threats to wild bees. In Australia, there are over 1600 native bee species and introduced European honey bees (Apis mellifera) have established throughout most landscapes. There is a major gap in knowledge of the interactions between honey bees and native bees in Australian landscapes, especially floral resource use.Here we report on the pollen diets of wild bees in protected areas of coastal heathland, an ecosystem characterised by mass flowering in late winter and spring. We sampled bees within three sites and DNA metabarcoding was used to compare the pollen diets of honey bees and native bees. We recorded 2, 772 bees in total, with 13 genera and 18 described species identified. Apis mellifera was the most common species across all locations, accounting for 42% of all bees collected. Native bee genera included eusocial Tetragonula (stingless bees) (37%), and semi-social Exoneura and Braunsapis (19.8% combined). Metabarcoding data revealed both Tetragonula and honey bees have wide foraging patterns, and the bipartite network overall was highly generalised (H2’ = 0.24). Individual honey bees carried pollen of 7–29 plant species, and significantly more species than all other bees. We found niche overlap in the diets of honey bees and native bees generally (0.42), and strongest overlap with stingless bees (0.70) and species of Braunsapis (0.62). A surprising finding was that many species carried pollen from Restionaceae and Cyperaceae, families generally considered to be predominantly wind-pollinated in Australia. Our study showed introduced honey bee use of resources overlaps with that of native bees in protected heathlands, but there are clear differences in their diet preferences.  相似文献   

2.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

3.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

4.
The effects of floral morphology on rates of pollen removal and deposition by different pollinators in generalist plant species are not well known. We studied pollination dynamics in wild radish, Raphanus raphanistrum, a plant visited by four groups of pollinators: honey bees, small native bees, butterflies, and syrphyd flies. The effects of anther position and other factors on pollen removal during single visits by all four pollinator taxa were measured. Flowers with high anther exsertion (i.e., anthers placed higher above the opening of the corolla tube) tended to have the highest numbers of pollen grains removed, but this effect was strongest for honey bees and butterflies. For all pollinator taxa, pollen removal increased with the number of pollen grains available on a flower and whowed a positive, decelerating relationship with the duration of the visit. The effects of stigma position and other factors on pollen deposition during single visits by honey bees and butterflies were also studied. The nectar-feeding butterflies had a higher pollination efficiency (percentage of pollen grains removed from anthers that were subsequently deposited on a stigma) than the nectar- and pollen-feeding honey bees. Flowers with intermediate stigma exsertion had the highest numbers of pollen grains deposited on their stigmas by butterflies, but stigma exsertion had no effect on deposition by honey bees. For both butterflies and honey bees, pollen deposition on the recipient flower increased with the amount of pollen removed from the donor flower, and there was a positive, decelerating relationship between deposition and time spent at the flower; these results are analogous to those for pollen removal. The effects of anther and stigma exsertion on pollen removal and denosition did not fit predictions based on patterns of floral correlations, but results for morphology, pollen availability, time spent per visit, and pollinator efficiency are in broad agreement with previous studies, suggesting the possible emergence of some general rules of pollen transfer.  相似文献   

5.
This study is the first contribution to knowledge of the relationships between Geotrigona argentina and the plants of the Argentine Dry Chaco forest. A total of 1260 g of honey (corresponding to 146 pots) and 763 g of pollen (63 pots) stored in four underground nests was studied. The honey pots from each nest were homogenised and the four honey samples were analysed by melissopalynological methods, whereas the pollen pots were studied individually. Both classical counts and counts affected by the volume of the pollen types were carried out. Pollen data were statistically analysed. Additional data on both protein and lipid content is also provided. A total of 39 pollen taxa were identified. Pollen collection was focused on a few pollen taxa: Prosopis, Castela coccinea, Maytenus and Capparis; these taxa, together with Ziziphus mistol and Pisonia zapallo, were also important nectar sources. The preliminary results show that pollen collection varied seasonally, being most diverse in the summer when G. argentina incorporates herbaceous plants into its diet. The pollen collection spectrum of G. argentina is similar to that of other Trigonina bees in that the main plant species collected are a few large shrubs or trees, whose flowering consists of small and clustered flowers. Pots with large amounts of monofloral loads with pollen from only a few species suggests an organised foraging behaviour that includes the recruitment of foragers, such as that observed in other eusocial bees.  相似文献   

6.
Industrialized farming relies on bee keepers transporting hives to the vicinity of large areas of mono-crops for crop pollination. Hives are typically moved multiple times per growing season to satisfy the pollination need. A phenomenon wherein colonies of honey bees collapse in large numbers has been threatening crops in North America. Honey bees are hosts to at least two pathogenic mites; Varroa destructor and Acarapis woodi (a tracheal mite). Pyrethrums are a group of flowering plants which include Chrysanthemum coccineum, Chrysanthemum cinerariifolium, Chrysanthemum marschallii, and related species. These plants produce potent insecticides, also named pyrethrums, which are powerful mite toxins. We believe that a honey bee dietary deficiency of pyrethrums and other micro-nutrients from pyrethrum producing plants allows parasitic mites to either kill the honey bees directly or reduce honey bee resistance to other pathogens. Intermittent feeding of honey bees on pyrethrum producing plants might reverse or prevent colony collapse disorder.  相似文献   

7.
In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.  相似文献   

8.
The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin''s botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees.  相似文献   

9.
Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.  相似文献   

10.
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.  相似文献   

11.
Honey bees are important pollinators and take micronutrients from different natural floral resources and turbid water to adequately meet their nutritional requirements. But the role of micronutrients for honey bee health is not well understood. Here, the present study was conducted to determine honey bees' micronutrients preference in summer and winter seasons. Also, the impact of micronutrients on foraging behaviour and brood increase was studied in different honey bee colonies. The results elucidated that honey bees exhibited a strong preference for a salt solution compared to deionized water during the summer and winter seasons. However, there was a notable switch in salt preference between seasons. Overall, honey bees showed significantly more foraging activity, more pollen collection, and increased brood area after sodium consumption compared to other minerals in the summer season. Further, pollen collection and brood area were significantly higher after the use of potassium in the winter season. Thus, the food preference of honey bees is strongly linked with the seasons and the availability of the floral resources. Our data suggested that honey bees may seek specific nutrients during variation of the seasonal conditions.  相似文献   

12.
Hummingbirds (Family Trochilidae) are key pollinators in several biodiversity hotspots, including the California Floristic Province in North America. Relatively little is known about how hummingbird diets change throughout the year, especially with regard to how migratory hummingbirds affect resident hummingbirds at stopover sites. In this study, we examine how hummingbird species, migratory status, sex, geographic region and local plant diversity influence floral resource use before, during, and after an influx of migratory hummingbirds (primarily Rufous hummingbirds, Selasphorus rufus) across California. We expected distinct floral resource use based upon species’ migratory status (resident vs. migrant), sex, sampling period, and geographic region. We employed DNA metabarcoding to detect plant DNA in hummingbird fecal samples to analyze diet diversity, composition, overlap, and interaction networks. We found significant effects of sex, sampling period, and migratory status on the alpha and beta diversity of plant taxa present in fecal samples. Analyses of Anna's hummingbirds (Calypte anna) alone revealed that female fecal samples contained higher plant species richness. In addition to hummingbird-pollinated plants, fecal samples also contained non-ornithophilous plants and species of agricultural importance. Diet overlap and plant-pollinator network analyses revealed high overlap in plant taxa used between hummingbird species, and networks were more connected, less nested, and less specialized than null models. DNA metabarcoding is minimally invasive and provides a detailed view of hummingbird diet, permitting large-scale studies. Insights into hummingbird diets are especially valuable given the logistical difficulties of directly observing floral visitation and foraging across broad temporal and spatial scales.  相似文献   

13.
We explored the pollen foraging behaviour of honey bee colonies situated in the corn and soybean dominated agroecosystems of central Ohio over a month‐long period using both pollen metabarcoding and waggle dance inference of spatial foraging patterns. For molecular pollen analysis, we developed simple and cost‐effective laboratory and bioinformatics methods. Targeting four plant barcode loci (ITS2, rbcL, trnL and trnH), we implemented metabarcoding library preparation and dual‐indexing protocols designed to minimize amplification biases and index mistagging events. We constructed comprehensive, curated reference databases for hierarchical taxonomic classification of metabarcoding data and used these databases to train the metaxa 2 DNA sequence classifier. Comparisons between morphological and molecular palynology provide strong support for the quantitative potential of multi‐locus metabarcoding. Results revealed consistent foraging habits between locations and show clear trends in the phenological progression of honey bee spring foraging in these agricultural areas. Our data suggest that three key taxa, woody Rosaceae such as pome fruits and hawthorns, Salix, and Trifolium provided the majority of pollen nutrition during the study. Spatially, these foraging patterns were associated with a significant preference for forests and tree lines relative to herbaceous land cover and nonflowering crop fields.  相似文献   

14.
Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to.  相似文献   

15.
Papilionate flowers, such as those of Robinia pseudoacacia L., show tripping mechanisms that prevent pollen release: only those bees which apply the right force on petals induce pollen to be deposited on their bodies. Apis mellifera is considered a poor visitor of such flowers, since individuals are usually too weak to trip the mechanism. Despite this, the honey bee pays frequent visits to flowers of R. pseudoacacia and produces a much appreciated unifloral honey. We investigated how bees manipulate R. pseudoacacia flowers, whether they contact the plant’s reproductive core and if there is any appreciable difference related to the manipulation of individual flowers. Honey bees showed two strategies for resource collection, namely legitimate visits and robberies. Legitimate visits were more frequent and about 63 % entailed contact with the flower’s reproductive core. We distinguished two behaviours, one to achieve successful positioning on the flower and the other for nectar intake. These behaviours were clearly perceptible and described by different curves of time frequency distribution. From the beginning to the end of anthesis, flowers were classified into four types on the basis of their morphological and phenological traits. Positioning time differed significantly depending on the flower type, with less time needed for more ageing flowers. Time spent in nectar intake was instead highly variable and independent of flower ageing. Selecting the right flower type would appear to lead to obtaining the R. pseudoacacia reward, overcoming species-specific physical inability. Moreover, the role of honey bees as pollinators of R. pseudoacacia is considered. Finally, the relations between petal characteristics and strength needed to trip the mechanism in papilionate flowers is also discussed in the light of nectar foragers.  相似文献   

16.
Honey bees, Apis mellifera, forage readily on flowers of upland cotton, Gossypium hirsutum, to harvest nectar. The abundant pollen gets caught in the haircoat of the bees, but cotton pollen is nevertheless rarely collected. Honey bee pollen collection effectiveness was therefore investigated in a flight room using cotton and five other spheroidal pollen taxa presented in sequence. Honey bees visited all pollen dishes, but okra pollen (Abelmoschus esculentus) was never packed successfully by the bees landing in the pollen dish. Cotton pollen was collected by 16% of the landing foragers, pumpkin pollen (Cucurbita pepo) by 71%, and pollen of corn (Zea mays), pigweed (Amaranthus palmeri), and sunflower (Helianthus annuus) were readily collected by nearly all foragers. The amount of time spent in the pollen dish was always short (1 to 9 seconds) and homogeneous among all pollen taxa, indicating that none of them was strongly repellent to the bees. The reduced effectiveness with which honey bees collected cotton pollen was demonstrated by the longer amount of time needed for pollen grooming and packing between two consecutive landings in the pollen dish and the small size of cotton pollen pellets (averages of 0.42 mg and 8.23 mg per pellet for cotton and corn pollen, respectively). This reduced efficiency in cotton pollen collection was associated primarily with the length of the spines on cotton pollen which physically interfered with the pollen aggregating process used by honey bees.  相似文献   

17.
The relationships between flowering plants and their insect visitors were studied in a Mediterranean grassland in north-east Spain. Floral traits (size, shape, symmetry, and colour), floral rewards (pollen and nectar), flowering period, and floral visitors were recorded for the 17 most abundant plants in the community. Flowering was year-round, but most species flowered in spring. The three species that flowered after spring had small flowers, but the distribution of floral features (including rewards offered) did not show a strong seasonality. Ants contributed 58.5% to the flower visits recorded. Other frequent visitors were beetles (12%), flies (9.5%), honey bees (6.4%), wild bees (6.4%), and wasps (5.2%). Honey bees were most abundant in April, wild bees from April to July, beetles from May to July, and ants from May to September. The lack of tight plant-insect associations was the rule, with most plant species visited by a rather diverse array of insects representing two or more orders. The plant species having narrower spectra of visitors either had flower rewards exposed or attracted mostly illegitimate visitors. By means of correspondence analysis four categories of plants were defined according to their main groups of visitors: (1) honey bees and large wild bees; (2) large wild bees; (3) ants and beetles; and (4) beetles and small-sized bees. The Mantel test was used to calculate correlations among four matrices representing similarities in visitors attracted, floral morphological traits, pollen-nectar rewards, and blooming time, respectively. In spite of seasonality shown by the different insect groups, results indicate that the observed patterns of visitor distribution among plants were most affected by pollen-nectar rewards. Received: 28 May 1996 / Accepted: 19 October 1996  相似文献   

18.
The aim of the study was to use melissopalynology to delineate the foraging preferences of bees in tropical environs. This was done by comparing pollen spectra obtained from the same hives every three months for three years at four sampling locations (in two sites) within a confined landscape mosaic. If melissopalynology is highly replicable, the spatial variation of the pollen spectrum from the honey samples would be much more than the temporal (inter-annual) variations. In other words, given the three factors, Month, Year and Location, honey pollen from different Locations, in a given Year and Month, would be much less similar than samples from different Years, in a given Location and Month. We then determined how the factors, Month, Year and Location, influenced the pollen influx of honey. The pollen analyses of the 42 honey samples collected during the three years yielded 80 pollen taxa/types: 72 dicotyledonous and 8 monocotyledonous, encompassing 41 botanical families spread into seven life forms namely, trees, shrubs, epiphytes, herbs, climbers, grasses, and sedges. Our results showed that pollen spectra were equally comparable between Locations and between Months and Years; the importance of this result is that it helped to demonstrate the complexity of ecological/environmental phenomena involved in the process of foraging by bees in a heterogeneous and complex landscape.  相似文献   

19.
Faced with the decline of pollinators, it is relevant to strengthen our understanding of the whole plant-pollinator web in semi-natural grasslands that serve as refuges for pollinator populations. The aim of this study was to explore the diversity of flower-foraging insects involved in pollen transfer in mountain semi-natural grasslands. Insects actively collecting pollen and/or nectar were caught in spring in six mountain semi-natural grasslands displaying a floristic richness gradient. Individual determinations of insects were made at the finest possible taxonomic scale and pollen loads were removed from the insect body. Using next-generation DNA sequencing, pollens were identified through the ribosomal DNA cistron using the ITS2 database and the ITS plant rDNA cistron sequences from Genbank. A total of 236 flower-foraging insects were collected. Diptera represented 82% of the total catches distantly followed by Hymenoptera (15%) and Apoidea (bees) (11%). Visual observations revealed that Diptera foraged on 16 of the 21 flower species visited by insects. DNA metabarcoding showed that 82% (191) of all of the collected insects were carrying pollen and 44% (104) were carrying two genera of plants or more. Our results demonstrate that Diptera are potential key-pollinators in mountain semi-natural grasslands that cannot be overlooked by the scientific community. However difficulties of taxonomic determination due to severe shortage of experts for Diptera have to be urgently overcome. Further studies on the link between pollen transfer and actual pollination in a global change context are also required. Moreover, our results support the idea that DNA metabarcoding provides accurate information about the plants-insects networks but it also pointed out sensitive issues, especially the necessity to build reliable national barcode databases.  相似文献   

20.
Pollen grains harvested by bees differ greatly in volume, thus pollen grains contribute differentially to larval and imaginal nutritional ecology, and ultimately to bee fitness. Simple proportions are inadequate when disentangling the importance of various pollen taxa found on foraging bees, their scopal loads or in their nest provisions. Disparate volumes of pollen grains are an essential feature to be considered in any foraging or dietary study. To document the importance of pollen volume on diet we mixed equal amounts (by weight) of ten morphologically diverse pollen taxa commonly collected by honey bees in the Sonoran desert of Arizona. These taxa were: Cereus giganteus, Ephedra trifurca, Fouquieria splendens, Helianthus annuus, Prosopis juliflora, and Simmondsia chinensis. Additionally, a small grain, Solanum rostratum, and two large grains, Cucurbita foetidissima and Opuntia phaeacantha, rarely harvested by honey bees, were included in the mixture. The mixture was inoculated with calibrated spore tablets, acetolyzed, counted, and % volumes calculated. Pollen grain numbers obtained from the middle of the coverslip were compared with those along the coverslip edge (x2) with no apparent statistically significant difference. The percent by pollen grain number was compared with percentage by pollen grain volume using a Chi-square test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号