首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gu J  Liu X  Li Y  Han W  Lei L  Yang Y  Zhao H  Gao Y  Song J  Lu R  Sun C  Feng X 《PloS one》2012,7(3):e31698

Background

Bacteriophage could be an alternative to conventional antibiotic therapy against multidrug-resistant bacteria. However, the emergence of resistant variants after phage treatment limited its therapeutic application.

Methodology/Principal Findings

In this study, an approach, named “Step-by-Step” (SBS), has been established. This method takes advantage of the occurrence of phage-resistant bacteria variants and ensures that phages lytic for wild-type strain and its phage-resistant variants are selected. A phage cocktail lytic for Klebsiella pneumoniae was established by the SBS method. This phage cocktail consisted of three phages (GH-K1, GH-K2 and GH-K3) which have different but overlapping host strains. Several phage-resistant variants of Klebsiella pneumoniae were isolated after different phages treatments. The virulence of these variants was much weaker [minimal lethal doses (MLD)>1.3×109 cfu/mouse] than that of wild-type K7 countpart (MLD = 2.5×103 cfu/mouse). Compared with any single phage, the phage cocktail significantly reduced the mutation frequency of Klebsiella pneumoniae and effectively rescued Klebsiella pneumoniae bacteremia in a murine K7 strain challenge model. The minimal protective dose (MPD) of the phage cocktail which was sufficient to protect bacteremic mice from lethal K7 infection was only 3.0×104 pfu, significantly smaller (p<0.01) than that of single monophage. Moreover, a delayed administration of this phage cocktail was still effective in protection against K7 challenge.

Conclusions/Significance

Our data showed that the phage cocktail was more effective in reducing bacterial mutation frequency and in the rescue of murine bacteremia than monophage suggesting that phage cocktail established by SBS method has great therapeutic potential for multidrug-resistant bacteria infection.  相似文献   

2.
Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (107 CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼109 CFU/g tissue) were recovered from ileal loops at all time points between 6–18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTRinh-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V. cholerae-induced intestinal fluid secretion.  相似文献   

3.
Vibrio cholerae is the bacterial causative agent of the human disease cholera. Non-pathogenic bacterium can be converted to pathogenic following infection by a filamentous phage, CTXΦ, that carries the cholera toxin encoding genes. A crucial step during phage infection requires a direct interaction between the CTXΦ minor coat protein (pIIICTX) and the C-terminal domain of V. cholerae TolA protein (TolAIIIvc). In order to get a better understanding of TolA function during the infection process, we have initiated a study of the V. cholerae TolAIII domain by 2D and 3D heteronuclear NMR. With the exception of the His-tag (H123–H128), 97 % of backbone 1H, 15N and 13C resonances were assigned and the side chain assignments for 92 % of the protein were obtained (BMRB deposit with accession number 25689).  相似文献   

4.
Aims: Vibrio cholerae is an important bacterial pathogen that causes global cholera epidemic. Although they are commonly found in coastal waters around the world, most environmental isolates do not contain cholera toxin genes. This study investigates vibriophages in southern California coastal waters and their ability to transfer cholera toxin genes. Methods and Results: Lytic phages infecting V. cholerae were isolated from Newport Bay, California, between May and November, while none was found in winter. Some of the phage isolates can infect multiple environmental V. cholerae strains and El Tor strains. All phages contained double‐stranded DNA. Transduction experiments using kanamycin‐resistant gene marked CTXΦ demonstrated that some environmental vibriophages can transfer CTXΦ genes from O1 El Tor strain to environmental non‐O1/O139 V. cholerae via generalized transduction. Conclusions: Vibriophages are important components of the natural aquatic ecosystem. They play an important role in influencing the dynamics and evolution of V. cholerae in the environment. Significance and Impact of the Study: This study demonstrates the significance of vibriophages in the coastal environment and transduction as one of the mechanisms of pathogenicity evolution among environmental V. cholerae.  相似文献   

5.
Growth of Vibrio cholerae O1 in Red Tide Waters off California   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio cholerae serotype O1 is autochthonous to estuarine and coastal waters. However, its population dynamics in such environments are not well understood. We tested the proliferation of V. cholerae N16961 during a Lingulodinium polyedrum bloom, as well as other seawater conditions. Microcosms containing 100-kDa-filtered seawater were inoculated with V. cholerae or the 0.6-μm-pore-size filterable fraction of seawater assemblages. These cultures were diluted 10-fold with fresh 100-kDa-filtered seawater every 48 h for four cycles. Growth rates ranged from 0.3 to 14.3 day−1 (4.2 day−1 ± 3.9) for V. cholerae and 0.1 to 9.7 day−1 (2.2 ± 2.8 day−1) for bacterial assemblage. Our results suggest that dissolved organic matter during intense phytoplankton blooms has the potential to support explosive growth of V. cholerae in seawater. Under the conditions tested, free-living V. cholerae was able to reach concentrations per milliliter that were up to 3 orders of magnitude higher than the known minimum infectious dose (104 cell ml−1) and remained viable under many conditions. If applicable to the complex conditions in marine ecosystems, our results suggest an important role of the growth of free-living V. cholerae in disease propagation and prevention during phytoplankton blooms.  相似文献   

6.
It has long been assumed that prolonged holding of environmental samples at the ambient air temperature prior to bacteriological analysis is detrimental to isolation and detection of Vibrio cholerae, the causative agent of pandemic cholera. The present study was aimed at understanding the effect of transporting environmental samples at the ambient air temperature on isolation and enumeration of V. cholerae. For water and plankton samples held at ambient temperatures ranging from 31°C to 35°C for 20 h, the total counts did not increase significantly but the number of culturable V. cholerae increased significantly compared to samples processed within 1 h of collection, as measured by culture, acridine orange direct count, direct fluorescent-antibody-direct viable count (DFA-DVC), and multiplex PCR analyses. For total coliform counts, total bacterial counts, and DFA-DVC counts, the numbers did not increase significantly, but the culturable plate counts for V. cholerae increased significantly after samples were held at the ambient temperature during transport to the laboratory for analysis. An increase in the recovery of V. cholerae O1 and improved detection of V. cholerae O1 rfb and ctxA also occurred when samples were enriched after they were kept for 20 h at the ambient temperature during transport. Improved detection and isolation of toxigenic V. cholerae from freshwater ecosystems can be achieved by holding samples at the ambient temperature, an observation that has significant implications for tracking this pathogen in diverse aquatic environments.  相似文献   

7.
The cholera toxin genes of Vibrio cholerae are encoded by CTXΦ, a lysogenic bacteriophage. Infection with this phage plays a determinant role in toxigenicity conversion and the emergence of new clones of pathogenic V. cholerae. Multiple phage alleles, defined by sequence types of the repressor gene rstR, have been found, showing the divergence of phage genomes. Pre-CTXΦ, which is characterized by the absence of toxin genes, is predicted to be the precursor of CTXΦ. We have found a new pre-CTXΦ prophage genome (named pre-CTXZJΦ for its novel rstR allele) in nontoxigenic V. cholerae O1 isolates that were obtained during surveillance of the estuary water of the Zhujiang River. A novel hybrid genome of the helper phage RS1 was identified in an environmental strain carrying pre-CTXZJΦ in this study. The chromosomal integration and genomic arrangement of pre-CTXZJΦ and RS1 were determined. The RS2 of pre-CTXZJΦ was shown to have a function in replication, but it seemed to have lost its ability to integrate. The RstR of pre-CTXZJΦ exerted the highest repression of its own rstA promoter compared to other RstRs, suggesting rstR-specific phage superinfection immunity and potential coinfection with other pre-CTXΦ/CTXΦ alleles. The environmental strain carrying pre-CTXZJΦ could still be infected by CTXETΦ, the most common phage allele in the strains of the seventh cholera pandemic, suggesting that this nontoxigenic clone could potentially undergo toxigenicity conversion by CTXΦ infection and become a new toxigenic clone despite already containing the pre-CTXΦ prophage.  相似文献   

8.
Escherichia coli O157:H7 is an endemic pathogen causing a variety of human diseases including mild diarrhea, hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura. This study concerns the exploitation of bacteriophages as biocontrol agents to eliminate the pathogen E. coli O157:H7. Two distinct lytic phages (e11/2 and e4/1c) isolated against a human strain of E. coli O157:H7, a previously isolated lytic phage (pp01), and a cocktail of all three phages were evaluated for their ability to lyse the bacterium in vivo and in vitro. Phage e11/2, pp01, and the cocktail of all three virulent phages resulted in a 5-log-unit reduction of pathogen numbers in 1 h at 37°C. However, bacteriophage-insensitive mutants (BIMs) emerged following the challenge. All tested BIMs had a growth rate which approximated that of the parental O157 strain, although many of these BIMs had a smaller, more coccoid cellular morphology. The frequency of BIM formation (10−6 CFU) was similar for e11/2, pp01, and the phage cocktail, while BIMs insensitive to e4/1c occurred at the higher frequency (10−4 CFU). In addition, BIMs commonly reverted to phage sensitivity within 50 generations. In an initial meat trial experiment, the phage cocktail completely eliminated E. coli O157:H7 from the beef meat surface in seven of nine cases. Given that the frequency of BIM formation is low (10−6 CFU) for two of the phages, allied to the propensity of these mutants to revert to phage sensitivity, we expect that BIM formation should not hinder the use of these phages as biocontrol agents, particularly since low levels of the pathogen are typically encountered in the environment.  相似文献   

9.

Background

Despite recent progress in understanding the molecular basis of Vibrio cholerae pathogenesis, there is relatively little knowledge of the factors that determine the variability in human susceptibility to V. cholerae infection.

Methods and Findings

We performed an observational study of a cohort of household contacts of cholera patients in Bangladesh, and compared the baseline characteristics of household members who went on to develop culture-positive V. cholerae infection with individuals who did not develop infection. Although the vibriocidal antibody is the only previously described immunologic marker associated with protection from V. cholerae infection, we found that levels of serum IgA specific to three V. cholerae antigens—the B subunit of cholera toxin, lipopolysaccharide, and TcpA, the major component of the toxin–co-regulated pilus—also predicted protection in household contacts of patients infected with V. cholerae O1, the current predominant cause of cholera. Circulating IgA antibodies to TcpA were also associated with protection from V. cholerae O139 infection. In contrast, there was no association between serum IgG antibodies specific to these three antigens and protection from infection with either serogroup. We also found evidence that host genetic characteristics and serum retinol levels modify susceptibility to V. cholerae infection.

Conclusions

Our observation that levels of serum IgA (but not serum IgG) directed at certain V. cholerae antigens are associated with protection from infection underscores the need to better understand anti–V. cholerae immunity at the mucosal surface. Furthermore, our data suggest that susceptibility to V. cholerae infection is determined by a combination of immunologic, nutritional, and genetic characteristics; additional factors that influence susceptibility to cholera remain unidentified.  相似文献   

10.

Background

Vibrio cholerae O1 and V. cholerae O139 infect humans, causing the diarrheal and waterborne disease cholera, which is a worldwide health problem. V. cholerae and the free-living amoebae Acanthamoeba species are present in aquatic environments, including drinking water and it has shown that Acanthamoebae support bacterial growth and survival. Recently it has shown that Acanthamoeba species enhanced growth and survival of V. cholerae O1 and O139. Water samples from different cholera endemic areas in Sudan were collected with the aim to detect both V. cholerae and Acanthamoeba species from same natural water samples by polymerase chain reaction (PCR).

Findings

For the first time both V. cholerae and Acanthamoeba species were detected in same natural water samples collected from different cholera endemic areas in Sudan. 89% of detected V. cholerae was found with Acanthamoeba in same water samples.

Conclusions

The current findings disclose Acanthamoedae as a biological factor enhancing survival of V. cholerae in nature.  相似文献   

11.
Gangetic delta is considered as the homeland of cholera, which is thought to be influenced by changes in populations of estuarine Vibrio cholerae. We aim to identify the environmental, biotic and abiotic driving forces influencing the V. cholerae dynamics in riverine-estuarine environment of southern deltaic Bengal. Cultivable Vibrio count (CVC) ranged between 1 and 103 colony forming units (CFU)/mL at a salinity gradient of 1.9–30 practical salinity unit (PSU). Increased water temperatrure during summer influences the higher CVC followed by a sudden fall along with the onset of monsoon upto winter. While summer V. cholerae O1 peak (50–100 CFU/mL) can be associated with higher water temperature (P < 0.05) and higher turbidity (P < 0.005); sharp fall during monsoon (15–45 CFU/mL) is attributed to reduced salinity (25–2.5 PSU). Plankton attached V. cholerae O1 varied between 10 and 1000 CFU/mL with a highest peak at winter followed by summer and monsoon. Prevalence of toxigenic V. cholerae O1 in low salinity (2–7.5 PSU) during monsoon identifies that high water temperature (>25 °C), higher turbidity (>100 NTU) and lower salinity plays the pivotal role in toxicity acquisition. Present investigation establishes the role of Sundarban mangrove, where V. cholerae exist in an avirulent condition. During migration towards low saline inland system, V. cholerae pool possibly acquires toxin genes under the influence of environmental factors. Planktonic attachment is possibly a survival strategy at adverse condition, when they do not acquire any toxin gene. Seasonal V. cholerae dynamics has been thoroughly established in environmental settings of high saline mangrove and brackish water flowing to inland low saline condition.  相似文献   

12.
Parenteral immunization with either formalin-fixed whole cells of the fimbriate Bgd17 strain or purified fimbriae protected against Vibrio cholerae O1 infection in rabbits, independent of biotype and serotype. Parenteral immunization of adult rabbits with purified fimbriae prior to V. cholerae O1 challenge resulted in a reduction of 2 to 3 orders of magnitude in the number of bacteria recovered from the small intestines of immunized rabbits in comparison to non-immunized controls. IgG and IgA antibodies against fimbrillin of V. cholerae O1 were detected in the convalescent sera of patients with cholera; however, little fimbrial antigen was detected in the commercially available cholera vaccines when examined by polyclonal and monoclonal antibodies against fimbriae. These data suggest that fimbrial hemagglutinin is a major adhesin of V. cholerae O1 and that parenteral immunization with fimbriae generates a specific immune response in the gut that may serve as one means of mitigating subsequent V. cholerae O1 gut infection.  相似文献   

13.
A filamentous phage was isolated from carrier strain AI-1841 of Vibrio cholerae O139 Bengal and thus was termed fs phage. The phage was measured to be approximately 1 μm in length and 6 nm in width. One end of the phage was slightly tapered and had a fibrous appendage. The plaques developed on strain AI-4450 of V. cholerae O139 were small and turbid. The phage grew in strain AI-4450 and reached a size of 108 to 109 pfu/ml at 5 hr after infection without inducing any lysis of the host bacteria. The group of phages attached on rod-shaped materials like fimbriae of this bacteria, with their fibrous appendages at the pointed end, were often found in the phage-infected culture. The anti-fimbrial serum effectively inhibited the infection of fs phage to the host strain AI-4450. We thus concluded that the phage can be adsorbed on fimbriae with a fibrous appendage on the pointed end of the phage filament.  相似文献   

14.
15.
Filamentous phages have distinguished roles in conferring many pathogenicity and survival related features to Gram-negative bacteria including the medically important Vibrio cholerae, which carries factors such as cholera toxin on phages. A novel filamentous phage, designated VFJΦ, was isolated in this study from an ampicillin and kanamycin-resistant O139 serogroup V. cholerae strain ICDC-4470. The genome of VFJΦ is 8555 nucleotides long, including 12 predicted open reading frames (ORFs), which are organized in a modular structure. VFJΦ was found to be a mosaic of two groups of V. cholerae phages. A large part of the genome is highly similar to that of the fs2 phage, and the remaining 700 bp is homologous to VEJ and VCYΦ. This 700 bp region gave VFJΦ several characteristics that are not found in fs2 and other filamentous phages. In its native host ICDC-4470 and newly-infected strain N16961, VFJΦ was found to exist as a plasmid but did not integrate into the host chromosome. It showed a relatively wide host range but did not infect the classical biotype O1 V. cholerae strains. After infection, the host strains exhibited obvious inhibition of both growth and flagellum formation and had acquired a low level of ampicillin resistance and a high level of kanamycin resistance. The antibiotic resistances were not directly conferred to the hosts by phage-encoded genes and were not related to penicillinase. The discovery of VFJΦ updates our understanding of filamentous phages as well as the evolution and classification of V. cholerae filamentous phage, and the study provides new information on the interaction between phages and their host bacteria.  相似文献   

16.

Background

Studies of the immunogenicity of the killed bivalent whole cell oral cholera vaccine, Shanchol, have been performed in historically cholera-endemic areas of Asia. There is a need to assess the immunogenicity of the vaccine in Haiti and other populations without historical exposure to Vibrio cholerae.

Methodology/Principal Findings

We measured immune responses after administration of Shanchol, in 25 adults, 51 older children (6–17 years), and 47 younger children (1–5 years) in Haiti, where cholera was introduced in 2010. A≥4-fold increase in vibriocidal antibody titer against V. cholerae O1 Ogawa was observed in 91% of adults, 74% of older children, and 73% of younger children after two doses of Shanchol; similar responses were observed against the Inaba serotype. A≥2-fold increase in serum O-antigen specific polysaccharide IgA antibody levels against V. cholerae O1 Ogawa was observed in 59% of adults, 45% of older children, and 61% of younger children; similar responses were observed against the Inaba serotype. We compared immune responses in Haitian individuals with age- and blood group-matched individuals from Bangladesh, a historically cholera-endemic area. The geometric mean vibriocidal titers after the first dose of vaccine were lower in Haitian than in Bangladeshi vaccinees. However, the mean vibriocidal titers did not differ between the two groups after the second dose of the vaccine.

Conclusions/Significance

A killed bivalent whole cell oral cholera vaccine, Shanchol, is highly immunogenic in Haitian adults and children. A two-dose regimen may be important in Haiti, and other populations lacking previous repeated exposures to V. cholerae.  相似文献   

17.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios ≥102 terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 1010 PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be ≥102. In addition, phages were maintained at 106 PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

18.
Summary The survival of UV-irradiated cholera phage e5 was found to increase when the host cells, Vibrio cholerae MAK757, were exposed to a low dose of UV irradiation before phage infection (Weigle reactivation), indicating the existence of a UV-inducible DNA repair pathway (SOS repair) in V. cholerae MAK757. The induction signal generated by UV irradiation was transient in nature and lasted about 20–30 min at 37°C. Maximal weigle reactivation of the phage was obtained when the host cells were irradiated with a UV dose of 16 J/m2. V. cholerae MAK757 was also found to possess efficient photoreactivation and host cell reactivation of UV-damaged DNA in phage e5.  相似文献   

19.
Vibrio cholerae, a natural inhabitant of the marine environment, poses a threat to human health, and its new epidemic variants have been reported. A method of multiplex polymerase chain reaction–capillary electrophoresis–laser-induced fluorescence (PCR–CE–LIF) detection has been developed to detect and identify V. cholerae in marine products sensitively, rapidly, and reliably. Four sets of primers were selected to amplify genus-specific VCC gene, O139 serogroup-specific O139 gene, O1 serogroup-specific O1 gene, and ctxA gene associated with the CT toxin of enterotoxigenic V. cholerae. The PCR products were detected using CE–LIF with SYBR Gold serving as the DNA fluorescent dye. The parameters of PCR and the separation conditions of CE–LIF were optimized. Under the optimal conditions, V. cholerae was detected and four serotypes were identified simultaneously within 8 min. The alignment analysis showed that the PCR products had good agreement with the published sequences from GenBank, indicating that the primers selected in this study had high specificity and the PCR results were reliable. The proposed method could detect 5 to 20 cfu/ml V. cholerae. The intraday precisions of migration time and peak area of DNA marker and PCR products were in the ranges of 1.60–2.56% and 1.60–6.29%, respectively. The specificity results showed that only five standard bacteria used in this study showed the specific peaks when the target bacteria were mixed with seven other common intestinal pathogenic bacteria at the same concentration. The assay was applied to 71 high-risk marine products, and different serotypes of V. cholerae could be identified sensitively and reliably.  相似文献   

20.
Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号