首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda’s cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012–2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered.  相似文献   

2.
This report describes the use of Bayesian methods to analyze polyprotein coding region sequences (n = 217) obtained from GenBank to define the genome-wide phylogeny of foot and mouth disease virus (FMDV). The results strongly supported the monophyly of five FMDV serotypes, O, A, Asia 1, C, and SAT 3, while sequences for the two remaining FMDV serotypes, SAT 1 and SAT 2 did not separate into entirely distinct clades. The phylogenomic tree revealed three sister-group relationships, serotype O + Asia 1, A + C, and SAT 1 + 3 + 2, with a new branching pattern: {[(O, Asia 1), (A, C)], (SAT 1, 2, 3)}. Within each serotype, there was no apparent periodic, geographic, or host species influence on the evolution of global FMDVs. Analysis of the polyprotein coding region of these sequences provided evidence for the influence of purifying selection on the evolution of FMDV. Using a Bayesian coalescent approach, the evolutionary rate of FMDV isolates that circulated during the years 1932-2007 was estimated to be 1.46 × 10(-3) substitutions/site/year, and the most recent common ancestor of the virus existed approximately 481 years ago. Bayesian skyline plot revealed a population expansion in the early 20(th) century that was followed by a rapid decline in population size from the late 20(th) century to the present day. These findings provide new insights into the mechanisms that impact on the evolution of this important livestock pathogen.  相似文献   

3.
The present study describes the frequency of Foot and Mouth Disease (FMD) virus serotypes (O, A and Asia-1) in major regions (all provinces) of Pakistan using Indirect Sandwich ELISA. Also, spatial distribution of various FMD serotypes and their comparison is discussed. A total of 590 samples (Epithelial tissue) have been analyzed during a period of five years (2005–2009). Out of 590 samples, 180 were found positive, giving an overall confirmation of FMDV about 33.2 %. Of the prevalent serotypes, FMDV ‘O’ serotype caused most outbreaks (20.7 %), followed by serotype A (6.6 %) and serotype Asia-1 (4.6 %) while there was no positive case of type ‘C’. The study clearly showed that the disease was more frequent in the agro-climatic zones than in hilly areas. Based on the data of 590 samples (>50 outbreaks), the overall prevalence of FMDV in cattle and buffaloes in Pakistan was 33.2 %, while in cattle alone, it was 37.1 %, higher than in buffalo (28.7 %). There were eight cases of mixed serotypes infection, indicating the presence of endemic state of disease. Another significant feature was the change over time. In phase-I (2005–2007), there was an overall prevalence of 29.4 %, while the occurrence of the serotype O, A and Asia-1 was 20.4 %, 2.9 % and 4.7 %, respectively. During phase-II (2008-2009), the overall prevalence was 59.21 %, while those of serotype O, A and Asia-1 were 22.4 %, 31.6 % and 4.0 %, respectively. This clearly indicated a shift from serotype O to A, which may help to explain the occurrence of more severe outbreaks, despite vaccination.  相似文献   

4.
Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting wild and domesticated animals. Despite the economic burden of the disease and all efforts to eradicate it, FMD outbreaks continue to emerge unexpectedly in developed and developing countries. Correlation of the mutational dynamics of the virus with its epidemiology remains unexplored. Analysis of 103 complete genomes representing the seven serotypes shows the important role that selection plays in the genomic evolution of viral isolates for serotypes. We identified selection and relaxed constraints due to genetic drift through analyses of synonymous sites. Finally, we investigated interactions between mutations that showed coevolving patterns and analyzed, based on protein structures, slightly deleterious and compensatory mutational dynamics. Specifically, we demonstrate that structurally exposed capsid proteins present a greater number of adaptive mutations and relaxed selection than nonstructural proteins. Such events have been magnified during the evolution of the southern African virus types (SATs). These shifts in selection-drift balance have generated the great antigenic and genetic diversity observed for SAT serotypes and that are responsible for epizootics on the continent of Africa. The high number of slightly deleterious and compensatory mutations in SAT serotypes in structural proteins is testament to such balance plasticity. The significant accumulation of these coevolving mutations in African serotypes supports their contribution in generating adaptive immune-escaping mutants and in establishing persistent infections. The reverse of this pattern in nonstructural proteins reveals the neutral fixation of mutations in the more widely spread and commonly studied Euro-Asiatic serotypes.  相似文献   

5.
6.
E Rieder  B Baxt  J Lubroth    P W Mason 《Journal of virology》1994,68(11):7092-7098
The G-H loop of VP1 (residues 132 to 159) of foot-and-mouth disease virus (FMDV) is a prominent feature on the virion surface and has an important role in vaccine efficacy, generation of antigenic variants, and cell binding. Using an infectious cDNA of FMDV, we have constructed serotype A viruses in which the G-H loop has been substituted with the homologous sequences from serotype O or C. These chimeric viruses replicated to high titer and displayed plaque morphologies similar to those of wild-type viruses, demonstrating that the functions provided by the loop can be readily exchanged between serotypes. Monoclonal antibody analyses showed that epitopes contained within the loop were transferred to the chimeras and that epitopes encoded by the type A backbone were maintained. Chemically inactivated vaccines prepared from chimeric viruses induced antibodies in guinea pigs that neutralized both type A and either type O or type C viruses. Swine inoculated with the A/C chimera vaccine also produced cross-reactive antibodies, were protected from challenge with the type A virus, and partially protected against challenge with type C. These studies emphasize the importance of epitopes outside of the G-H loop in protective immunity in swine, which is a natural host of FMDV.  相似文献   

7.

Background

To study the role of African buffalos (Syncerus caffer) in the maintenance of foot-and-mouth disease in Uganda, serum samples were collected from 207 African buffalos, 21 impalas (Aepyceros melampus), 1 giraffe (Giraffa camelopardalis), 1 common eland (Taurotragus oryx), 7 hartebeests (Alcelaphus buselaphus) and 5 waterbucks (Kobus ellipsiprymnus) from four major National Parks in Uganda between 2005 and 2008. Serum samples were screened to detect antibodies against foot-and-mouth disease virus (FMDV) non-structural proteins (NSP) using the Ceditest® FMDV NS ELISA. Solid Phase Blocking ELISAs (SPBE) were used to determine the serotype-specificity of antibodies against the seven serotypes of FMDV among the positive samples. Virus isolation and sequencing were undertaken to identify circulating viruses and determine relatedness between them.

Results

Among the buffalo samples tested, 85% (95% CI = 80-90%) were positive for antibodies against FMDV non-structural proteins while one hartebeest sample out of seven (14.3%; 95% CI = -11.6-40.2%) was the only positive from 35 other wildlife samples from a variety of different species. In the buffalo, high serotype-specific antibody titres (≥ 80) were found against serotypes O (7/27 samples), SAT 1 (23/29 samples), SAT 2 (18/32 samples) and SAT 3 (16/30 samples). Among the samples titrated for antibodies against the four serotypes O, SAT 1, SAT 2 and SAT 3, 17/22 (77%; CI = 59.4-94.6%) had high titres against at least two serotypes.FMDV isolates of serotypes SAT 1 (1 sample) and SAT 2 (2 samples) were obtained from buffalo probang samples collected in Queen Elizabeth National Park (QENP) in 2007. Sequence analysis and comparison of VP1 coding sequences showed that the SAT 1 isolate belonged to topotype IV while the SAT 2 isolates belonged to different lineages within the East African topotype X.

Conclusions

Consistent detection of high antibody titres in buffalos supports the view that African buffalos play an important role in the maintenance of FMDV infection within National Parks in Uganda. Both SAT 1 and SAT 2 viruses were isolated, and serological data indicate that it is also likely that FMDV serotypes O and SAT 3 may be present in the buffalo population. Detailed studies should be undertaken to define further the role of wildlife in the epidemiology of FMDV in East Africa.
  相似文献   

8.
Comparative genomics of foot-and-mouth disease virus   总被引:28,自引:0,他引:28       下载免费PDF全文
Here we present complete genome sequences, including a comparative analysis, of 103 isolates of foot-and-mouth disease virus (FMDV) representing all seven serotypes and including the first complete sequences of the SAT1 and SAT3 genomes. The data reveal novel highly conserved genomic regions, indicating functional constraints for variability as well as novel viral genomic motifs with likely biological relevance. Previously undescribed invariant motifs were identified in the 5' and 3' untranslated regions (UTR), as was tolerance for insertions/deletions in the 5' UTR. Fifty-eight percent of the amino acids encoded by FMDV isolates are invariant, suggesting that these residues are critical for virus biology. Novel, conserved sequence motifs with likely functional significance were identified within proteins L(pro), 1B, 1D, and 3C. An analysis of the complete FMDV genomes indicated phylogenetic incongruities between different genomic regions which were suggestive of interserotypic recombination. Additionally, a novel SAT virus lineage containing nonstructural protein-encoding regions distinct from other SAT and Euroasiatic lineages was identified. Insights into viral RNA sequence conservation and variability and genetic diversity in nature will likely impact our understanding of FMDV infections, host range, and transmission.  相似文献   

9.
Since the early 2000s outbreaks of foot-and-mouth disease (FMD) have been described in several previously FMD-free Asian nations, including the Republic of Korea (South Korea). One outbreak with FMD virus (FDMV) serotype A and two with serotype O occurred in South Korea in 2010/2011. The causative viruses belonged to lineages that had been spreading in South East Asia, far East and East Asia since 2009 and presented a great threat to the countries in that region. Most FMDV strains infect ruminants and pigs, as it happened during the outbreaks of FMDV serotype O in South Korea. Contrastingly, the strain of serotype A affected only ruminants. Based upon these findings, the intention of the work described in the current report was to characterize and compare the infectivity, virulence and transmission of both strains under laboratory conditions in cattle and pigs, by direct inoculation and contact exposure. As expected, FMDV serotype O was highly virulent in both cattle and swine by contact exposure and direct inoculation. Surprisingly, FMDV serotype A was highly virulent in swine, but was less infectious in cattle by contact exposure to infected swine or cattle. Interestingly, similar quantities of aerosolized FMDV RNA were detected during experiments with viruses of serotypes O and A. Specific virus-host interaction of A/SKR/2010 could affect the transmission of this strain to cattle, and this may explain in part the limited spread of the serotype A epizootic.  相似文献   

10.
The nature of selection on capsid genes of foot-and-mouth disease virus (FMDV) was characterized by examining the ratio of nonsynonymous to synonymous substitutions in 11 data sets of sequences obtained from six different serotypes of FMDV. Using a method of analysis that assigns each codon position to one of a number of estimated values of nonsynonymous to synonymous ratio, significant evidence of positive selection was identified in 5 data sets, operating at 1-7% of codon positions. Evidence of positive selection was identified in complete capsid sequences of serotypes A and C and in VP1 sequences of serotypes SAT 1 and 2. Sequences of serotype SAT-2 recovered from a persistently infected African buffalo also revealed evidence for positive selection. Locations of codons under positive selection coincide closely with those of antigenic sites previously identified with the use of monoclonal antibody escape mutants. The vast majority of codons are under mild to strong purifying selection. However, these results suggest that arising antigenic variants benefit from a selective advantage in their interaction with the immune system, either during the course of an infection or in transmission to individuals with previous exposure to antigen. Analysis of amino acid usage at sites under positive selection indicates that this selective advantage can be conferred by amino acid substitutions that share physicochemically similar properties.  相似文献   

11.
Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus, which is virulent for susceptible animals, infects cells via four members of the alpha(V) subclass of cellular integrins. In contrast, tissue culture adaptation of some FMDV serotypes results in the loss of viral virulence in the animal, accompanied by the loss of virus' ability to use integrins as receptors. These avirulent viral variants acquire positively charged amino acids on surface-exposed structural proteins, resulting in the utilization of cell surface heparan sulfate (HS) molecules as receptors. We have recently shown that FMDV serotypes utilizing integrin receptors enter cells via a clathrin-mediated mechanism into early endosomes. Acidification within the endosome results in a breakdown of the viral capsid, releasing the RNA, which enters the cytoplasm by a still undefined mechanism. Since there is evidence that HS internalizes bound ligands via a caveola-mediated mechanism, it was of interest to analyze the entry of FMDV by cell-surface HS. Using a genetically engineered variant of type O(1)Campos (O(1)C3056R) which can utilize both integrins and HS as receptors and a second variant (O(1)C3056R-KGE) which can utilize only HS as a receptor, we followed viral entry using confocal microscopy. After virus bound to cells at 4 degrees C, followed by a temperature shift to 37 degrees C, type O(1)C3056R-KGE colocalized with caveolin-1, while O(1)C3056R colocalized with both clathrin and caveolin-1. Compounds which either disrupt or inhibit the formation of lipid rafts inhibited the replication of O(1)C3056R-KGE. Furthermore, a caveolin-1 knockdown by RNA interference also considerably reduced the efficiency of O(1)C3056R-KGE infection. These results indicate that HS-binding FMDV enters the cells via the caveola-mediated endocytosis pathway and that caveolae can associate and traffic with endosomes. In addition, these results further suggest that the route of FMDV entry into cells is a function solely of the viral receptor.  相似文献   

12.
Many infectious diseases are not maintained in a state of equilibrium but exhibit significant fluctuations in prevalence over time. For pathogens that consist of multiple antigenic types or strains, such as influenza, malaria or dengue, these fluctuations often take on the form of regular or irregular epidemic outbreaks in addition to oscillatory prevalence levels of the constituent strains. To explain the observed temporal dynamics and structuring in pathogen populations, epidemiological multi-strain models have commonly evoked strong immune interactions between strains as the predominant driver. Here, with specific reference to dengue, we show how spatially explicit, multi-strain systems can exhibit all of the described epidemiological dynamics even in the absence of immune competition. Instead, amplification of natural stochastic differences in disease transmission, can give rise to persistent oscillations comprising semi-regular epidemic outbreaks and sequential dominance of dengue''s four serotypes. Not only can this mechanism explain observed differences in serotype and disease distributions between neighbouring geographical areas, it also has important implications for inferring the nature and epidemiological consequences of immune mediated competition in multi-strain pathogen systems.  相似文献   

13.
Dengue virus, the causative agent of dengue fever, has four major serotypes characterized by large genetic and immunological distances. We propose that the unusually large distances between the serotypes can be explained in the light of a process of antibody-dependent enhancement (ADE) leading to increased mortality. Antibody-dependent enhancement results from a new infection with a particular serotype in an individual with acquired immunity to a different serotype. Classical dengue fever causes negligible mortality, but ADE leads to the risk of developing the significantly more dangerous dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). A mathematical model is presented that describes the epidemiological dynamics of two serotypes of a pathogen where there is the possibility of co-infection and reinfection by a different serotype, along with increased mortality as a result of enhancement. We show that if there is no or slightly increased mortality after reinfection (enhancement), serotypes with a small immunological distance can stably coexist. This suggests that a cloud of serotypes with minor serological differences will constitute the viral population. By contrast, if enhancement is sufficiently great, a substantial immunological distance is necessary for two serotypes to stably coexist in the population. Therefore, high mortality owing to enhancement leads to an evolutionarily stable viral community comprising a set of distantly separated serotypes.  相似文献   

14.
Foot-and-mouth disease (FMD) is an acute and highly contagious disease caused by foot-and-mouth disease virus (FMDV) that can affect cloven-hoofed animal species, leading to severe economic losses worldwide. Therefore, the development of a safe and effective new vaccine to prevent and control FMD is both urgent and necessary. In this study, we developed a chimeric virus-like particle (VLP) vaccine candidate for serotype O FMDV and evaluated its protective immunity in guinea pigs. Chimeric VLPs were formed by the antigenic structural protein VP1 from serotype O and segments of the viral capsid proteins (VP2, VP3, and VP4) from serotype A. The chimeric VLPs elicited significant humoral and cellular immune responses with a higher level of anti-FMDV antibodies and cytokines than the control group. Furthermore, four of the five guinea pigs vaccinated with the chimeric VLPs were completely protected against challenge with 100 50% guinea pig infectious doses (GPID50) of the virulent FMDV strain O/MAY98. These data suggest that chimeric VLPs are potential candidates for the development of new vaccines against FMDV.  相似文献   

15.
Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence--by controlling for phylogenetic structure--for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease.  相似文献   

16.
Understanding the dynamics of foot‐and‐mouth disease virus (FMDV), an endemic and economically constraining disease, is critical in designing control programmes in Africa. This study investigates the evolutionary epidemiology of SAT1 and SAT2 FMDV in Eastern Africa, as well as between cattle and wild African buffalo. Bayesian phylodynamic models were used to analyse SAT1 and SAT2 VP1 gene segments collected between 1975 and 2016, focusing on the SAT1 and SAT2 viruses currently circulating in Eastern Africa. The root state posterior probabilities inferred from our analyses suggest Zimbabwe as the ancestral location for SAT1 currently circulating in Eastern Africa (p = 0.67). For the SAT2 clade, Kenya is inferred to be the ancestral location for introduction of the virus into other countries in Eastern Africa (p = 0.72). Salient (Bayes factor >10) viral dispersal routes were inferred from Tanzania to Kenya, and from Kenya to Uganda for SAT1 and SAT2, respectively. Results suggest that cattle are the source of the SAT1 and SAT2 clades currently circulating in Eastern Africa. In addition, our results suggest that the majority of SAT1 and SAT2 in livestock come from other livestock rather than wildlife, with limited evidence that buffalo serve as reservoirs for cattle. Insights from the present study highlight the role of cattle movements and anthropogenic activities in shaping the evolutionary history of SAT1 and SAT2 in Eastern Africa. While the results may be affected by inherent limitations of imperfect surveillance, our analysis elucidates the dynamics between host species in this region, which is key to guiding disease intervention activities.  相似文献   

17.
18.
It is becoming increasingly clear that many diseases are the result of infection from multiple genetically distinct strains of a pathogen. Such multi-strain infections have the capacity to alter both disease and pathogen dynamics. Infection with multiple strains of human cytomegalovirus (HCMV) is common and has been linked to enhanced disease. Suggestions that disease enhancement in multi-strain infected patients is due to complementation have been supported by trans-complementation studies in mice during co-infection of wild type and gene knockout strains of murine CMV (MCMV). Complementation between naturally circulating strains of CMV has, however, not been assessed. In addition, many models of multi-strain infection predict that co-infecting strains will compete with each other and that this competition may contribute to selective transmission of more virulent pathogen strains. To assess the outcome of multi-strain infection, C57BL/6 mice were infected with up to four naturally circulating strains of MCMV. In this study, profound within-host competition was observed between co-infecting strains of MCMV. This competition was MCMV strain specific and resulted in the complete exclusion of certain strains of MCMV from the salivary glands of multi-strain infected mice. Competition was dependent on Ly49H+ natural killer (NK) cells as well as the expression of the ligand for Ly49H, the MCMV encoded product, m157. Strains of MCMV which expressed an m157 gene product capable of ligating Ly49H were outcompeted by strains of MCMV expressing variant m157 genes. Importantly, within-host competition prevented the shedding of the less virulent strains of MCMV, those recognized by Ly49H, into the saliva of multi-strain infected mice. These data demonstrate that NK cells have the strain specific recognition capacity required to meditate within-host competition between strains of MCMV. Furthermore, this within-host competition has the capacity to shape the dynamics of viral shedding and potentially select for the transmission of more virulent virus strains.  相似文献   

19.
Foot-and-mouth disease (FMD) is a highly contagiousdisease of cloven-hoofed animals such as cattle and pig.The disease causes explosive epidemics and heavyeconomic losses in the agriculture worldwide [1]. FMDvirus (FMDV) shows a high genetic and antigenicvariability, and has seven serotypes: O, A, C, AsiaI, SAT1,SAT2 and SAT3 [2]. The FMDV control is mainly imple-mented using chemically inactivated virus vaccines, whichmay contain residual living virus and pose a risk of virusreleas…  相似文献   

20.
Dengue is known to transmit between humans and A. aegypti mosquitoes living in neighboring houses. Although transmission is thought to be highly heterogeneous in both space and time, little is known about the patterns and drivers of transmission in groups of houses in endemic settings. We carried out surveys of PCR positivity in children residing in 2-block patches of highly endemic cities of Colombia. We found high levels of heterogeneity in PCR positivity, varying from less than 30% in 8 of the 10 patches to 56 and 96%, with the latter patch containing 22 children simultaneously PCR positive (PCR22) for DEN2. We then used an agent-based model to assess the likely eco-epidemiological context of this observation. Our model, simulating daily dengue dynamics over a 20 year period in a single two block patch, suggests that the observed heterogeneity most likely derived from variation in the density of susceptible people. Two aspects of human adaptive behavior were critical to determining this density: external social relationships favoring viral introduction (by susceptible residents or infectious visitors) and immigration of households from non-endemic areas. External social relationships generating frequent viral introduction constituted a particularly strong constraint on susceptible densities, thereby limiting the potential for explosive outbreaks and dampening the impact of heightened vectorial capacity. Dengue transmission can be highly explosive locally, even in neighborhoods with significant immunity in the human population. Variation among neighborhoods in the density of local social networks and rural-to-urban migration is likely to produce significant fine-scale heterogeneity in dengue dynamics, constraining or amplifying the impacts of changes in mosquito populations and cross immunity between serotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号