首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DCs) serve as central regulators of adaptive immunity by presenting antigens and providing necessary co-signals. Environmental information received by the DCs determines the co-signals delivered to the responding adaptive cells and, ultimately, the outcome of the interaction. DCs loaded with relevant antigens have been used as therapeutic cellular vaccines, but the optimal antigen loading method has not been determined. We compared different methods to load class I and class II epitopes from the male antigenic complex, HY, onto DCs for the potency of the immune response induced in vivo. Co-incubation of female DCs with HY peptides, RNA or cell lysate from HY expressing tumor induced immune responses equivalent to male DCs. In contrast, female DCs incubated with irradiated, apoptotic HY expressing tumor cells (or male B cells) generated a stronger immune response than male DCs or female DCs loaded using any of the other methods. DC loading with apoptotic tumor resulted in complete protection against high dose HY-expressing tumor challenge whereas 100% lethality was observed in groups receiving DCs that were loaded with peptides, RNA, or lysate. We conclude that signals provided to the DCs by apoptotic cells substantially augment the potency of DC vaccines.  相似文献   

2.
The choice of the tumor antigen preparation used for dendritic cell (DC) loading is important for optimizing DC vaccines. In the present study, we compared DCs pulsed with hepatocellular carcinoma (HCC) total RNA or cell lysates for their capacity to activate T cells. We showed here that HCC total RNA pulsed-DCs induced effector T lymphocyte responses which showed higher killing ability to HCC cell lines, as well as higher frequency of IFN-γ producing of CD4+ and CD8+ T cells when compared with lysate pulsed-DCs. Both of RNA and lysate loading did not influence the changes of mature DC phenotype and the capacity of inducing T cell proliferation. However, HCC lysate loading significantly inhibited the production of inflammatory cytokines IL-12p70, IFN-γ and enhanced the secretion of anti-inflammatory cytokines IL-10 of mature DCs. Our results indicated that DCs loaded with HCC RNA are superior to that loaded with lysate in priming anti-HCC CTL response, suggesting that total RNA may be a better choice for DCs-based HCC immunotherapy.  相似文献   

3.
The efficiency of the antitumor immune response triggered by dendritic cell (DC)-based vaccines depends predominantly on the efficiency of delivering tumor antigen-coding nucleic acids into DCs. Mannosylated liposomes were used to deliver tumor total RNA into DCs both ex vivo and in vivo, and the cytotoxic T-lymphocyte (CTL) antitumor response was assayed. The liposomes contained the mannosylated lipid conjugate 3-[6-(α-D-mannopyranosyloxy)hexyl]amino-4-{6-[rac-2,3-di(tetradecyloxy)prop-1-yl oxycarbonylamino]hexyl}aminocyclobut-3-en-1,2-dione), the polycationic lipid 2X3 (1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride), and the zwitterionic lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) at a molar ratio of 1: 3: 6 and were used as a transfection agent. Total RNA isolated from B16-F10 mouse melanoma cells served as a source of tumor antigens. Systemic administration of mannosylated liposomes–tumor RNA complexes into circulation of melanoma- bearing mice induced an efficient CTL response, which reduced the melanoma cell index in vitro with the same efficiency (by a factor of 2.8) as CTLs activated via an inoculation of DCs loaded with complexes of the same composition ex vivo. Complexes of tumor RNA with control liposomes, which lacked the mannosylated lipid conjugate, or DCs transfected with these complexes ex vivo were less efficient and reduced the melanoma cell count by a factor of only 1.6–1.8.  相似文献   

4.
The aim of the present phase I/II study was to evaluate the safety, immune responses and clinical activity of a vaccine based on autologous dendritic cells (DC) loaded with an allogeneic tumor cell lysate in advanced melanoma patients. DC derived from monocytes were generated in serum-free medium containing GM-CSF and IL-13 according to Good Manufacturing Practices. Fifteen patients with metastatic melanoma (stage III or IV) received four subcutaneous, intradermal, and intranodal vaccinations of both DC loaded with tumor cell lysate and DC loaded with hepatitis B surface protein (HBs) and/or tetanus toxoid (TT). No grade 3 or 4 adverse events related to the vaccination were observed. Enhanced immunity to the allogeneic tumor cell lysate and to TAA-derived peptides were documented, as well as immune responses to HBs/TT antigens. Four out of nine patients who received the full treatment survived for more than 20 months. Two patients showed signs of clinical response and received 3 additional doses of vaccine: one patient showed regression of in-transit metastases leading to complete remission. Eighteen months later, the patient was still free of disease. The second patient experienced stabilization of lung metastases for approximately 10 months. Overall, our results show that vaccination with DC loaded with an allogeneic melanoma cell lysate was feasible in large-scale and well-tolerated in this group of advanced melanoma patients. Immune responses to tumor-related antigens documented in some treated patients support further investigations to optimize the vaccine formulation. Margarita Salcedo and Nadège Bercovici both contributed equally to this work  相似文献   

5.
We previously isolated the novel heteropolysaccharide maitake Z-fraction (MZF) from the maitake mushroom (Grifola frondosa), and demonstrated that MZF significantly inhibited tumor growth by inducing cell-mediated immunity. In this study, we demonstrated that MZF upregulated the expression of CD80, CD86, CD83, and MHC II on bone marrow-derived dendritic cells (DCs) and significantly increased interleukin-12 (IL-12) and tumor necrosis factor-alpha production by DCs in a dose-dependent manner. MZF-treated DCs significantly stimulated both allogeneic and antigen-specific syngenic T cell responses and enhanced antigen-specific interferon-gamma (IFN-γ) production by syngenic CD4+ T cells; however, MZF-treated DCs did not affect IL-4 production. Furthermore, the enhancement of IFN-γ production in CD4+ T cells, which was induced by MZF-treated DCs, was completely inhibited by the addition of an anti-IL-12 antibody. These results indicate that MZF induced DC maturation and antigen-specific Th1 response by enhancing DC-produced IL-12. We also demonstrated that DCs pulsed with colon-26 tumor lysate in the presence of MZF induced both therapeutic and preventive effects on colon-26 tumor development in BALB/c mice. These results suggest that MZF could be a potential effective adjuvant to enhance immunotherapy using DC-based vaccination.  相似文献   

6.
Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8+ T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8+ T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1+ vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.  相似文献   

7.
Background Dendritic cells (DCs) are the most effective antigen-presenting cells. In the last decade, the use of DCs for immunotherapy of cancer patients has been vastly increased. High endocytic capacity together with a unique capability of initiating primary T-cell responses have made DCs the most potent candidates for this purpose. Although DC vaccination occasionally leads to tumor regression, clinical efficacy, and immunogenicity of DCs in clinical trials has not been yet clarified. The present study evaluated the safety and effectiveness of tumor-lysate loaded DC vaccines in advanced colorectal cancer (CRC) patients with carcinoembryonic antigen (CEA) positive tumors. Results Six patients HLA-A*0201-positive were vaccinated with autologous DCs loaded with tumor lysates (TL) together with tetanus toxoid antigen, hepatitis B, and influenza matrix peptides. Two additional patients were injected with DCs that were generated from their sibling or parent with one haplotype mismatch. All patients received the vaccines every 2 weeks, with a total of three intra-nodal injections per patient. The results indicated that DC vaccination was safe and well tolerated by the patients. Specific immune responses were detected and in some patients, transient stabilization or even reduction of CEA levels were observed. The injection of haplotype mismatched HLA-A*0201-positive DCs resulted in some enhancement of the anti-tumor response in vitro and led to stabilization/reduction of CEA levels in the serum, compared to the use of autologous DCs. Conclusion Altogether, these results suggest that TL-pulsed DCs may be an effective vaccine method in CRC patients. Elimination of regulatory mechanisms as well as adjustment of the vaccination protocol may improve the efficacy of DC vaccination. An erratum to this article can be found at  相似文献   

8.
The discovery of dendritic cells (DCs) as professional antigen presenting cells has opened up new possibilities for their use in the development of tumor vaccines. We investigated the effect of the CD8α+ DCs loaded with heat-treated tumor lysate (HTL) as a vaccine in tumor immunotherapy. The HTL loaded CD8α+ DCs, TL loaded CD8α+ DCs and unloaded CD8α+ DCs were subcutaneously injected in the fibrosarcoma-bearing mice. The splenocyte proliferation and the shifting of Th1/Th2 response were measured. The results indicated a significant increase in the lymphocytes proliferation and the IFN-γ production in the test group of mouse splenocytes. According to the results, HTL loaded CD8α+ DCs vaccine significantly decreased tumor growth and longer survival than the other immunized animals. These findings show that anti-tumor immune response against the fibrosarcoma can be induced by HTL loaded CD8α+ DCs and may provide a useful therapeutic model for development of approaches to tumor treatments.  相似文献   

9.
Dendritic cells (DC) loaded with tumor associated antigens (TAA) are often used for the vaccination of cancer patients; however methodologies for the vaccine preparation have not yet been standardized. The purpose of this work was to optimize the ex-vivo production of functional TAA-loaded DC that would produce interleukin-2 (IL-12) and enhance the T cell response. We generated ex-vivo DC from human monocytes with granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-4, and whole necrotic tumor cells (cell lysates) of cancer cell lines were used as model TAA. DC were loaded with lysates without or with additional tumor necrosis factor-alpha (TNF-alpha), or cytokine combination treatments and tested for functional ability in vitro. Tumor cell lysates alone did not fully mature DC either phenotypically or functionally. After antigen uptake additional maturation signals were necessary. TNF-alpha matured DC phenotypically, but additional interferon-gamma (IFN-gamma) treatment was necessary to achieve functional maturation, the production of significant amounts of IL-12. Since IL-12 production by DC increased during the first 24 h of maturation and declined by 48 h, proper timing of the ex-vivo DC treatment was crucial for the generation of functionally mature antigen-loaded DC. Our results suggest that after allowing 4 h of tumor lysate uptake by immature DC, further treatment with TNF-alpha and IFN-gamma for 24 h provides the optimal conditions to obtain functional TAA-loaded DC. These TAA-loaded cytokine pretreated DC then prime na?ve T cells, and enhance both T helper 1 (Th1), Th2 and cytotoxic T lymphocyte (CTL) responses, that are necessary to achieve an effective, specific anti-tumor response.  相似文献   

10.
Magnetic force-guided delivery (magnetofection) has been studied as a new modality for introducing small-interfering RNA (siRNA) into target cells, but its delivery efficiency needs to be improved. Here, we report that magnetofection of N,N'-dioleylglutamide (DG)-based magnetic lipoplexes can substantially enhance the cellular delivery rates of siRNA. The siRNA was triply complexed with DG-based cationic liposomes and cationic iron-oxide nanoparticles. The formation of siRNA-containing magnetic lipoplexes was confirmed by gel retardation, sizes, and zeta potential values. Fluorescence microscopy and flow cytometry of fluorescent marker-labeled siRNA revealed that the DG-based magnetic lipoplexes conferred a higher cellular delivery rate of siRNA than DG-based lipoplexes or Lipofectamine 2000. In addition to the enhanced delivery of siRNA, the DG-based magnetic lipoplexes showed lack of cytotoxicity. We then tested the application of these magnetic lipoplexes for the cellular delivery of anticancer siRNA. Cancer cell lines magnetofected with DG-based magnetic lipoplexes containing Mcl1-specific siRNA (siMcl1) showed much lower viability than the groups treated with DG-based lipoplexes or Lipofectamine 2000, indicating that our magnetofection strategy conferred greater siMcl1-induced anticancer activity. These results suggest that DG-based magnetic lipoplexes are promising candidates for enhancing the efficiency of magnetic field-guided siRNA delivery.  相似文献   

11.
Dendritic cells (DCs) play an important role in the induction of T cell responses. Fc gammaRs, expressed on DCs, facilitate the uptake of complexed Ag, resulting in efficient MHC class I and MHC class II Ag presentation and DC maturation. In the present study, we show that prophylactic immunization with DCs loaded with Ag-IgG immune complexes (ICs) leads to efficient induction of tumor protection in mice. Therapeutic vaccinations strongly delay tumor growth or even prevent tumors from growing out. By depleting CD4+ and CD8+ cell populations before tumor challenge, we identify CD8+ cells as the main effector cells involved in tumor eradication. Importantly, we show that DCs that are preloaded in vitro with ICs are at least 1000-fold more potent than ICs injected directly into mice or DCs loaded with the same amount of noncomplexed protein. The contribution of individual Fc gammaRs to Ag presentation, T cell response induction, and induction of tumor protection was assessed. We show that Fc gammaRI and Fc gammaRIII are capable of enhancing MHC class I-restricted Ag presentation to CD8+ T cells in vitro and that these activating Fc gammaRs on DCs are required for efficient priming of Ag-specific CD8+ cells in vivo and induction of tumor protection. These findings show that targeting ICs via the activating Fc gammaRs to DCs in vitro is superior to direct IC vaccination to induce protective tumor immunity in vivo.  相似文献   

12.
Malignant glioma of the CNS is a tumor with a very bad prognosis. Development of adjuvant immunotherapy is hampered by interindividual and intratumoral antigenic heterogeneity of gliomas. To evaluate feasibility of tumor vaccination with (autologous) tumor cells, we have studied uptake of tumor cell lysates by dendritic cells (DCs), and the T-cell stimulatory capacity of the loaded DCs. DCs are professional antigen-presenting cells, which have already been used as natural adjuvants to initiate immune responses in human cancer. An efficacious uptake of tumor cell proteins, followed by processing and presentation of tumor-associated antigens by the DCs, is indeed one of the prerequisites for a potent and specific stimulation of T lymphocytes. Human monocytes were differentiated in vitro to immature DCs, and these were loaded with FITC-labeled tumor cell proteins. Uptake of the tumor cell proteins and presentation of antigens in the context of both MHC class I and II could be demonstrated using FACS analysis and confocal microscopy. After further maturation, the loaded DCs had the capacity to induce specific T-cell cytotoxic activity against tumor cells. We conclude that DCs loaded with crude tumor lysate are efficacious antigen-presenting cells able to initiate a T-cell response against malignant glioma tumor cells.  相似文献   

13.
The unique Ag-presenting capabilities of dendritic cells (DCs) make them attractive vehicles for the delivery of therapeutic cancer vaccines. While tumor Ag-pulsed DC vaccination has shown promising results in a variety of murine tumor models and early clinical trials, the optimal form of tumor Ag for use in DC pulsing has not been determined. We have studied DC vaccination using alternative forms of a soluble protein tumor Ag, the tumor-specific Ig idiotype (Id) expressed by a murine B cell lymphoma. Vaccination of mice with Id-pulsed DCs was able to induce anti-Id Abs only when the Id was modified to constitute a hapten-carrier system. DCs pulsed with Id proteins modified to include foreign constant regions, foreign constant regions plus GM-CSF, or linkage to keyhole limpet hemocyanin (KLH) carrier protein were increasingly potent in their ability to elicit anti-Id Abs. Vaccination with Id-KLH-pulsed DCs induced tumor-protective immunity superior to that obtained with Id-KLH plus a chemical adjuvant, and protection was not dependent upon effector T cells. Rather, protection was associated with the induction of high titers of anti-Id Abs of the IgG2a subclass, characteristic of a Th1 response. These findings have implications for the design of therapeutic Ag-pulsed DC vaccines for cancer immunotherapy in humans.  相似文献   

14.
Immunization with antigen-pulsed dendritic cells (DCs) can be used to elicit optimal immune responses. We developed the SRDC cell line, with a morphology, phenotype and activity similar to mouse splenic CD4(-)CD8alpha(+)CD205(+)CD11b(-) dendritic cells, which induce a polarized Th1 immune response. We evaluated the ability of SRDCs pulsed with HIV-1 viral lysate, oligomeric soluble gp140 or capsid p24 to induce specific antibody and T-cell responses in CBA/J mice. Immunization with all loaded SRDCs elicited antibody responses against the antigens tested. However, only HIV-1 viral lysate and gp140-pulsed SRDCs elicited specific CD4(+) and CD8(+) T-cell responses. These findings demonstrate the value of well characterized DC lines for optimizing the antigen-loading mixture, according to the DC population targeted. Our data suggest that splenic DCs pulsed with complex antigens, such as HIV-1 viral lysate or oligomeric soluble gp140, could be used as vaccines, eliciting strong primary Th1-polarized and humoral immune responses against HIV proteins in vivo.  相似文献   

15.
Dendritic cells (DC) represent the most potent antigen presenting cells and induce efficient cytotoxic T lymphocyte (CTL) responses against viral infections. Targeting antigens (Ag) to receptors on DCs is a promising strategy to enhance antitumor and antiviral immune responses induced by DCs. Here, we investigated the potential of CD11c-specific single-chain fragments (scFv) fused to an immunodominant peptide of Friend retrovirus for induction of virus-specific T cell responses by DCs. In vitro CD11c-specific scFv selectively targeted viral antigens to DCs and thereby significantly improved the activation of virus-specific T cells. In vaccination experiments DCs loaded with viral Ag targeted to CD11c provided improved rejection of FV-derived tumors and efficiently primed virus-specific CTL responses after virus challenge. Since the induction of strong virus-specific T cell responses is critical in viral infections, CD11c targeted protein vaccines might provide means to enhance the cellular immune response to prophylactic or therapeutic levels.  相似文献   

16.
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.  相似文献   

17.
Zhang L  Zhang H  Liu W  Wang H  Jia J  Si X  Ren J 《Cellular immunology》2005,238(1):61-66
Dendritic cell (DC) vaccination with the use of total tumor RNA provides the potential to generate a polyclonal immune response to multiple known and unknown tumor antigens without HLA restriction. Our study evaluated this approach as potential immunotherapy for patients with hepatocellular carcinoma (HCC). Immature DCs generated from peripheral blood mononuclear cells of patients with HCC were transfected with HepG2-GFP (HepG2 cells transfected stably with plasmid pEGFP-C3) cells total RNA. Transfected, matured DCs were used to stimulate autologous T cells. Results revealed that DCs transfected with HepG2-GFP cells total RNA expressed EGFP when observed by flow cytometry. Compared with those before transfection, the expressions of membrane molecules were increased dramatically, and interleukin-12p70 release in the supernatant was elevated significantly. Specific T cells generated by DCs transfected with HepG2-GFP total RNA recognized HLA-matched HepG2 cell lines specifically. These findings indicate that these RNA-transfected DCs successfully generate specific T cells that specifically recognize HCC cells. Total tumor RNA-pulsed DCs may have potential as an adjuvant immunotherapy for patients with HCC.  相似文献   

18.
Cell-free translation in Krebs-2 extracts was optimized for RNAs of two plant viruses; potato virus X (PVX, potexvirus), and tobacco mosaic virus (TMV, tobamovirus). PVX and TMV RNAs programmed synthesis of similar sets of polypeptides in both the Krebs-2 extracts and the rabbit reticulocyte lysates, major virus-specific products being the same in molecular weight in both in vitro systems. PVX structural protein (p29) was absent among polypeptides synthesized in the Krebs-2 system but was readily identified by immuno-precipitation among the ones synthesized in the reticulocyte lysate system. The "cap" analog, m7Gpp, inhibited the synthesis of all the polypeptides programmed by PVX RNA in the Krebs-2 system. The synthesis of only a few of the most high molecular weight products in the reticulocyte lysate system was inhibited, the synthesis of a number of low molecular weight products (and among them p29) was even stimulated. Thus, the PVX capped messengers derived from PVX genomic RNA due to its fragmentation with endogenous nuclease activities. The use of the Krebs-2 system allows to avoid activation of internal PVX genes.  相似文献   

19.
The magnitude of Th1 cells response to vaccination is a critical factor in determining protection from clinical disease. Our previous in vitro studies suggested that exposure to the nicotine component of cigarette smoke skews the differentiation of both human and mouse dendritic cell (DC) precursors into atypical DCs (DCs differentiated ex vivo in the presence of nicotine) lacking parameters essential for the development of Th1-mediated immunity. In this study, we determined the causal relationship between nicotine-induced DC alterations and host response to vaccines. We show that animals exposed to nicotine failed to develop and maintain Ag-specific effector memory Th1 cells and Ab production to protein-based vaccine formulated with Th1 adjuvants. Accordingly, both prophylactic and therapeutic vaccines failed to protect and cure the nicotine-exposed mice from disease. More importantly, we demonstrate the nicotine-induced defects in the biological activities of in vivo DCs as an underlying mechanism. Indeed, i.v. administration of DCs differentiated in the presence of nicotine preferentially promoted the development of Ag-specific IL-4-producing effector cells in the challenged mice. In addition, DC subsets isolated from mice exposed to nicotine produced significantly less cytokines in response to Th1 adjuvants and inadequately supported the development of Ag-specific Th1 cells. Collectively, our studies suggest that nicotine-induced defects in the DC system compromises vaccine efficacy in smokers.  相似文献   

20.
The recognition, internalization and intracellular processing of antigen are the main functions of dendritic cells (DCs). In the course of these processes, DCs differentiate and acquire the ability to produce cytokines responsible for polarization of the immunological response. Therefore, vaccination with tumor antigen-loaded DCs is one of the most promising approaches to induce tumor-specific immune response. The purpose of this study was to analyze the migratory abilities, from an injection site to tumor-draining lymph nodes (tLN), of DCs applied as an anti-tumor vaccine and their capacity for immune response activation. Mouse DCs of the established JAWS II cell line transduced with EGFP gene or ex vivo bone marrow-isolated DCs (BM-DCs) stained with intravital CFDA dye were loaded with MC38 colon carcinoma tumor lysate (TAg) and then administered peritumorally to MC38 tumor-bearing C57BL/6 mice. On the first, third, fifth and seventh days after injection the tumors, tLNs and spleens were examined. The TAg-loaded DCs migrated more effectively to the tLNs than did the unloaded control DCs; however, the majority of them remained in the tumor vicinity. Immunohistological analysis of the tumor tissues demonstrated that only TAg-loaded DCs activated an immune response. Seven days after DCs vaccine administration, numerous necrotic areas and some apoptotic bodies were observed in the tumor tissue. However, the anti-MC38 tumor cytotoxic activity of spleen and tLN cells from mice treated with both TAg-loaded and unloaded DCs reached a maximum on the fifth day after DC injection. Concluding, TAg-loaded DCs migrated more efficiently to tLNs and were more effective activators of local (but not systemic) cellular immune response than were unloaded DCs. We hypothesize that only the application of TAg-loaded DCs to tumor-bearing mice as an adjuvant supporting chemotherapy may activate a more effective anti-tumor response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号