首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Phlebotomus orientalis Parrot (Diptera: Psychodidae) is the main vector of visceral leishmaniasis (VL) caused by Leishmania donovani in East Africa. Here we report on life cycle parameters and susceptibility to L. donovani of two P. orientalis colonies originating from different sites in Ethiopia: a non-endemic site in the lowlands - Melka Werer (MW), and an endemic focus of human VL in the highlands - Addis Zemen (AZ).

Methodology/Principal Findings

Marked differences in life-cycle parameters between the two colonies included distinct requirements for larval food and humidity during pupation. However, analyses using Random Amplified Polymorphic DNA (RAPD) PCR and DNA sequencing of cytB and COI mitochondrial genes did not reveal any genetic differences. F1 hybrids developed successfully with higher fecundity than the parental colonies. Susceptibility of P. orientalis to L. donovani was studied by experimental infections. Even the lowest infective dose tested (2×103 per ml) was sufficient for successful establishment of L. donovani infections in about 50% of the P. orientalis females. Using higher infective doses, the infection rates were around 90% for both colonies. Leishmania development in P. orientalis was fast, the presence of metacyclic promastigotes in the thoracic midgut and the colonization of the stomodeal valve by haptomonads were recorded in most P. orientalis females by day five post-blood feeding.

Conclusions

Both MW and AZ colonies of P. orientalis were highly susceptible to Ethiopian L. donovani strains. As the average volume of blood-meals taken by P. orientalis females are about 0.7 µl, the infective dose at the lowest concentration was one or two L. donovani promastigotes per sand fly blood-meal. The development of L. donovani was similar in both P. orientalis colonies; hence, the absence of visceral leishmaniasis in non-endemic area Melka Werer cannot be attributed to different susceptibility of local P. orientalis populations to L. donovani.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The aim of the present study was to detect natural infection by Leishmania (Leishmania) infantum in Lutzomyia longipalpis captured in Barcarena, state of Pará, Brazil, through the use of three primer sets. With this approach, it is unnecessary to previously dissect the sandfly specimens. DNA of 280 Lu. longipalpis female specimens were extracted from the whole insects. PCR primers for kinetoplast minicircle DNA (kDNA), the mini-exon gene and the small subunit ribosomal RNA (SSU-rRNA) gene of Leishmania were used, generating fragments of 400 bp, 780 bp and 603 bp, respectively. Infection by the parasite was found with the kDNA primer in 8.6% of the cases, with the mini-exon gene primer in 7.1% of the cases and with the SSU-rRNA gene primer in 5.3% of the cases. These data show the importance of polymerase chain reaction as a tool for investigating the molecular epidemiology of visceral leishmaniasis by estimating the risk of disease transmission in endemic areas, with the kDNA primer representing the most reliable marker for the parasite.  相似文献   

9.
10.
11.
12.
13.
14.
Monoxenic cultures of Heterodera zeae, the corn cyst nematode (CCN), were established on root explants of corn Zea mays L., cv. Kenworthy. The life cycle of H. zeae was determined from light anti scanning electron microscopic observations of the root explants grown in the dark at 29.5 ± .5 C under gnotobiotic conditions. The life cycle, from the time the explants were inoculated with second-stage larvae (L2) to the first appearance of newly hatched second-generation L2, required 22 days. The occurrence of males was rare suggesting that reproduction in H. zeae is parthenogenetic.  相似文献   

15.
The early stage of Leishmania development in sand flies is closely connected with bloodmeal digestion. Here we compared various parameters of bloodmeal digestion in sand flies that are either susceptible (Phlebotomus argentipes and P. orientalis) or refractory (P. papatasi and Sergentomyia schwetzi) to Leishmania donovani, to study the effects on vector competence. The volume of the bloodmeal ingested, time of defecation of bloodmeal remnants, timing of formation and degradation of the peritrophic matrix (PM) and dynamics of proteolytic activities were compared in four sand fly species. Both proven vectors of L. donovani showed lower trypsin activity and slower PM formation than refractory species. Interestingly, the two natural L. donovani vectors strikingly differed from each other in secretion of the PM and midgut proteases, with P. argentipes possessing fast bloodmeal digestion with a very high peak of chymotrypsin activity and rapid degradation of the PM. Experimental infections of P. argentipes did not reveal any differences in vector competence in comparison with previously studied P. orientalis; even the very low initial dose (2×103 promastigotes/ml) led to fully developed late-stage infections with colonization of the stomodeal valve in about 40% of females. We hypothesise that the period between the breakdown of the PM and defecation of the bloodmeal remnants, i.e. the time frame when Leishmania attach to the midgut in order to prevent defecation, could be one of crucial parameters responsible for the establishment of Leishmania in the sand fly midgut. In both natural L. donovani vectors this period was significantly longer than in S. schwetzi. Both vectors are equally susceptible to L. donovani; as average bloodmeal volumes taken by females of P. argentipes and P. orientalis were 0.63 μl and 0.59 μl, respectively, an infective dose corresponding to 1–2 parasites was enough to initiate mature infections.  相似文献   

16.
17.
18.
Leishmania parasites expose phosphatidylserine (PS) on theirsurface, a process that has been associated with regulation of host''s immuneresponses. In this study we demonstrate that PS exposure by metacyclicpromastigotes of Leishmania amazonensis favours bloodcoagulation. L. amazonensis accelerates in vitro coagulation ofhuman plasma. In addition, L. amazonensis supports the assemblyof the prothrombinase complex, thus promoting thrombin formation. This processwas reversed by annexin V which blocks PS binding sites. During blood meal,Lutzomyia longipalpis sandfly inject saliva in the bitesite, which has a series of pharmacologically active compounds that inhibitblood coagulation. Since saliva and parasites are co-injected in the host duringnatural transmission, we evaluated the anticoagulant properties of sandflysaliva in counteracting the procoagulant activity of L.amazonensis . Lu. longipalpis saliva reversesplasma clotting promoted by promastigotes. It also inhibits thrombin formationby the prothrombinase complex assembled either in phosphatidylcholine (PC)/PSvesicles or in L. amazonensis . Sandfly saliva inhibits factorX activation by the intrinsic tenase complex assembled on PC/PS vesicles andblocks factor Xa catalytic activity. Altogether our results show that metacyclicpromastigotes of L. amazonensis are procoagulant due to PSexposure. Notably, this effect is efficiently counteracted by sandflysaliva.  相似文献   

19.
Here, we show the morphological events associated with organelle segregation and their timing in the cell cycle of a reference strain of Leishmania (L.) amazonensis promastigotes, the main causative agent of Tegumentary leishmaniasis in the Americas. We show evidences that during the cell cycle, L. amazonensis promastigotes present two distinct modes of nucleus and kinetoplast segregation, which occur in different temporal order in different proportions of cells. We used DAPI-staining and EdU-labeling to monitor the segregation of DNA-containing organelles and DNA replication in wild-type parasites. The emergence of a new flagellum was observed using a specific monoclonal antibody. The results show that L. amazonensis cell cycle division is peculiar, with 65% of the dividing cells duplicating the kinetoplast before the nucleus, and the remaining 35% doing the opposite or duplicating both organelles concomitantly. In both cases, the new flagellum appeared during S to G2 phase in 1N1K cells and thus before the segregation of both DNA-containing organelles; however, we could not determine the exact timing of flagellar synthesis. Most of these results were confirmed by the synchronization of parasites using hydroxyurea. Altogether, our data show that during the cell cycle of L. amazonensis promastigotes, similarly to L. donovani, the segregation of nucleus and kinetoplast do not follow a specific order, especially when compared to other trypanosomatids, reinforcing the idea that this characteristic seems to be species-specific and may represent differences in cellular biology among members of the Leishmania genus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号