首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES- were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels, these data indicate E1 as constituting a significant portion of this inner, pore-forming wall, and TM1 contributing as pore-lining in the extracellular portion of transmembrane span.  相似文献   

2.
Previous work has shown that channels formed by both connexin (Cx)26 and Cx32 (heteromeric Cx26/Cx32 hemichannels) are selectively permeable to cAMP and cGMP. To further investigate differential connexin channel permeability among second messengers, and the influence of connexin channel composition on the selectivity, the permeability of inositol phosphates with one to four phosphate groups through homomeric Cx26, homomeric Cx32, and heteromeric Cx26/Cx32 channels was examined. Connexin channels were purified from transfected HeLa cells and from rat, mouse, and guinea pig livers, resulting in channels with a broad range of Cx26/Cx32 aggregate ratios. Permeability to inositol phosphates was assessed by flux through reconstituted channels. Surprisingly, myoinositol and all inositol phosphates tested were permeable through homomeric Cx32 and homomeric Cx26 channels. Even more surprising, heteromeric Cx26/Cx32 channels showed striking differences in permeability among inositol phosphates with three or four phosphate groups and among isomers of inositol triphosphate. Thus, heteromeric channels are selectively permeable among inositol phosphates, whereas the corresponding homomeric channels are not. There was no discernible difference in the permeability of channels with similar Cx26/Cx32 ratios purified from native and heterologous sources. The molecular selectivity of heteromeric channels among three inositol triphosphates could not be accounted for by simple connexin isoform stoichiometry distributions and therefore may depend on specific isoform radial arrangements within the hexameric channels. Dynamic regulation of channel composition in vivo may effectively and efficiently modulate intercellular signaling by inositol phosphates.  相似文献   

3.
Gap-junctional channels are formed by two connexons or gap-junctional hemichannels in series, with each connexon conformed by six connexin molecules. As with other membrane proteins, structural information on connexons can potentially be obtained with techniques that take advantage of the highly specific thiol chemistry by positioning Cys residues at locations of interest, ideally in an otherwise Cys-less protein. It has been shown that conserved Cys residues located in the extracellular loops of connexins are essential for the docking of connexons from adjacent cells, preventing the formation of functional gap-junctional channels. Here we engineered a Cys-less version of connexin 43 (Cx43) and assessed its function using a Xenopus oocyte expression system. The Cys-less protein was expressed at the plasma membrane and did not form gap-junctional channels but formed hemichannels that behave similarly to those formed by Cx43 in terms of permeation to carboxyfluorescein. The carboxyfluorescein permeability of Cys-less hemichannels was increased by protein kinase C inhibition, like the wild-type Cx43 hemichannels. We generated a protein with a single Cys in a position (residue 34) thought to face the channel pore and show that thiol modification of the Cys abolishes the carboxyfluorescein permeability. We conclude that Cysless Cx43 forms regulated functional hemichannels, and therefore Cys-less Cx43 is a useful tool for future structural studies.  相似文献   

4.
The mechanisms of action of endogenous modulatory ligands of connexin channels are largely unknown. Previous work showed that protonated aminosulfonates (AS), notably taurine, directly and reversibly inhibit homomeric and heteromeric channels that contain Cx26, a widely distributed connexin, but not homomeric Cx32 channels. The present study investigated the molecular mechanisms of connexin channel modulation by taurine, using hemichannels and junctional channels composed of Cx26 (homomeric) and Cx26/Cx32 (heteromeric). The addition of a 28-amino acid "tag" to the carboxyl-terminal domain (CT) of Cx26 (Cx26(T)) eliminated taurine sensitivity of homomeric and heteromeric hemichannels in cells and liposomes. Cleavage of all but four residues of the tag (Cx26(Tc)) resulted in taurine-induced pore narrowing in homomeric hemichannels, and restored taurine inhibition of heteromeric hemichannels (Cx26(Tc)/Cx32). Taurine actions on junctional channels were fully consistent with those on hemichannels. Taurine-induced inhibition of Cx26/Cx32(T) and nontagged Cx26 junctional channels was blocked by extracellular HEPES, a blocker of the taurine transporter, confirming that the taurine-sensitive site of Cx26 is cytoplasmic. Nuclear magnetic resonance of peptides corresponding to Cx26 cytoplasmic domains showed that taurine binds to the cytoplasmic loop (CL) and not the CT, and that the CT and CL directly interact. ELISA showed that taurine disrupts a pH-dependent interaction between the CT and the CT-proximal half of the CL. These studies reveal that AS disrupt a pH-driven cytoplasmic interdomain interaction in Cx26-containing channels, causing closure, and that the Cx26CT has a modulatory role in Cx26 function.  相似文献   

5.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

6.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

7.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

8.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26–Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

9.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26-Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

10.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26-Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

11.
Oligonucleotide microarray analysis uniquely shows that several members of the connexin family of gap junction proteins are expressed by the epithelium during mouse mammary gland development. Connexin 26 (Cx26) is present throughout pregnancy and lactation, is then undetectable shortly after weaning, but reappears during involution. Additionally, Cx30 is abundant in late-pregnant and early lactating gland epithelium. From mid-pregnancy into early lactation, Cx26 and Cx30 co-localize in junctional plaques between epithelial cells, forming hemichannels of mixed connexin content. Microarray analysis also shows Cx32 is developmentally restricted to parturition, suggesting that specific modification of gap junction channel composition and/or intercellular communication pathways occurs at parturition. Specifically, heteromeric channels of all pairwise combinations are formed when these connexins are expressed within the same cells. Of these hemichannels, Cx26/Cx32 pores are increasingly sensitive to closure by taurine (an osmolyte implicated in milk protein synthesis) with increasing Cx26 content. In contrast, physiological taurine concentrations have no effect on Cx26/Cx30 and Cx30/Cx32 channel activity. Such changes in connexin expression and channel composition and their chemical modulation are discussed in relation to the various stages of mammary gland development in the adult mouse. This work was supported by grants GM36044 and GM61406 from the NIH to A.L. Harris and by generous funding from Breakthrough Breast Cancer Research to B. Gusterson.  相似文献   

12.
Connexins form channels with large aqueous pores that mediate fluxes of inorganic ions and biological signaling molecules. Studies aimed at identifying the connexin pore now include a crystal structure that provides details of putative pore-lining residues that need to be verified using independent biophysical approaches. Here we extended our initial cysteine-scanning studies of the TM1/E1 region of Cx46 hemichannels to include TM2 and TM3 transmembrane segments. No evidence of reactivity was observed in either TM2 or TM3 probed with small or large thiol-modifying reagents. Several identified pore residues in E1 of Cx46 have been verified in different Cx isoforms. Use of variety of thiol reagents indicates that the connexin hemichannel pore is large and flexible enough, at least in the extracellular part of the pore funnel, to accommodate uncommonly large side chains. We also find that that gating characteristics are largely determined by the same domains that constitute the pore. These data indicate that biophysical and structural studies are converging towards a view that the N-terminal half of the Cx protein contains the principal components of the pore and gating elements, with NT, TM1 and E1 forming the pore funnel.  相似文献   

13.
Mutations in the human GJB2 gene, which encodes connexin26 (Cx26), underlie various forms of hereditary deafness and skin disease. While it has proven difficult to discern the exact pathological mechanisms that cause these disorders, studies have shown that the loss or abnormal function of Cx26 protein has a profound effect on tissue homeostasis. Here, we used the Xenopus oocyte expression system to examine the functional characteristics of a Cx26 mutation (G45E) that results in keratitis-ichthyosis-deafness syndrome (KIDS) with a fatal outcome. Our data showed that oocytes were able to express both wild-type Cx26 and its G45E variant, each of which formed hemichannels and gap junction channels. However, Cx26-G45E hemichannels displayed significantly greater whole cell currents than wild-type Cx26, leading to cell lysis and death. This severe phenotype could be rescued in the presence of elevated Ca2+ levels in the extracellular milieu. Cx26-G45E could also form intercellular channels with a similar efficiency as wild-type Cx26, however, with increased voltage sensitive gating. We also compared Cx26-G45E with a previously described Cx26 mutant, A40V, which has an overlapping human phenotype. We found that both dominant Cx26 mutants elicited similar functional consequences and that cells coexpressing mutant and wild-type connexins predominantly displayed mutant-like behavior. These data suggest that mutant hemichannels may act on cellular homeostasis in a manner that can be detrimental to the tissues in which they are expressed. connexin  相似文献   

14.
Gap junctions are intercellular channels formed by the serial, head to head arrangement of two hemichannels. Each hemichannel is an oligomer of six protein subunits, which in vertebrates are encoded by the connexin gene family. All intercellular channels formed by connexins are sensitive to the relative difference in the membrane potential between coupled cells, the transjunctional voltage (Vj), and gate by the separate action of their component hemichannels (Harris, A.L., D.C. Spray, and M.V. Bennett. 1981. J. Gen. Physiol. 77:95-117). We reported previously that the polarity of Vj dependence is opposite for hemichannels formed by two closely related connexins, Cx32 and Cx26, when they are paired to form intercellular channels (Verselis, V.K., C.S. Ginter, and T.A. Bargiello. 1994. Nature. 368:348-351). The opposite gating polarity is due to a difference in the charge of the second amino acid. Negative charge substitutions of the neutral asparagine residue present in wild-type Cx32 (Cx32N2E or Cx32N2D) reverse the gating polarity of Cx32 hemichannels from closure at negative Vj to closure at positive Vj. In this paper, we further examine the mechanism of polarity reversal by determining the gating polarity of a chimeric connexin, in which the first extracellular loop (E1) of Cx32 is replaced with that of Cx43 (Cx43E1). The resulting chimera, Cx32*Cx43E1, forms conductive hemichannels when expressed in single Xenopus oocytes and intercellular channels in pairs of oocytes (Pfahnl, A., X.W. Zhou, R. Werner, and G. Dahl. 1997. Pflügers Arch. 433:733-779). We demonstrate that the polarity of Vj dependence of Cx32*Cx43E1 hemichannels in intercellular pairings is the same as that of wild-type Cx32 hemichannels and is reversed by the N2E substitution. In records of single intercellular channels, Vj dependence is characterized by gating transitions between fully open and subconductance levels. Comparable transitions are observed in Cx32*Cx43E1 conductive hemichannels at negative membrane potentials and the polarity of these transitions is reversed by the N2E substitution. We conclude that the mechanism of Vj dependence of intercellular channels is conserved in conductive hemichannels and term the process Vj gating. Heteromeric conductive hemichannels comprised of Cx32*Cx43E1 and Cx32N2E*Cx43E1 subunits display bipolar Vj gating, closing to substates at both positive and negative membrane potentials. The number of bipolar hemichannels observed in cells expressing mixtures of the two connexin subunits coincides with the number of hemichannels that are expected to contain a single oppositely charged subunit. We conclude that the movement of the voltage sensor in a single connexin subunit is sufficient to initiate Vj gating. We further suggest that Vj gating results from conformational changes in individual connexin subunits rather than by a concerted change in the conformation of all six subunits.  相似文献   

15.
《FEBS letters》2014,588(8):1297-1303
The avascular lens of the eye is covered anteriorly by an epithelium containing nucleated, metabolically active cells. This epithelium contains the first lens cells to encounter noxious external stimuli and cells that can develop compensatory or protective responses. Lens epithelial cells express the gap junction proteins, connexin43 (Cx43) and connexin50 (Cx50). Cx43 and Cx50 form gap junction channels and hemichannels with different properties. Although they may form heteromeric hemichannels, Cx43 and Cx50 probably do not form heterotypic channels in the lens. Cx50 channels make their greatest contribution to intercellular communication during the early postnatal period; subsequently, Cx43 becomes the predominant connexin supporting intercellular communication. Although epithelial Cx43 appears dispensable for lens development, Cx50 is critical for epithelial cell proliferation and differentiation. Cx43 and Cx50 hemichannels and gap junction channels are regulated by multiple different agents. Lens epithelial cell connexins contribute to both normal lens physiology and pathology.  相似文献   

16.
The gap junction channel is formed by proper docking of two hemichannels. Depending on the connexin(s) in the hemichannels, homotypic and heterotypic gap junction channels can be formed. Previous studies suggest that the extracellular loop 2 (E2) is an important molecular domain for heterotypic compatibility. Based on the crystal structure of the Cx26 gap junction channel and homology models of heterotypic channels, we analyzed docking selectivity for several hemichannel pairs and found that the hydrogen bonds between E2 domains are conserved in a group of heterotypically compatible hemichannels, including Cx26 and Cx32 hemichannels. According to our model analysis, Cx32N175Y mutant destroys three hydrogen bonds in the E2-E2 interactions due to steric hindrance at the heterotypic docking interface, which makes it unlikely to dock with the Cx26 hemichannel properly. Our experimental data showed that Cx26-red fluorescent protein (RFP) and Cx32-GFP were able to traffic to cell-cell interfaces forming gap junction plaques and functional channels in transfected HeLa/N2A cells. However, Cx32N175Y-GFP exhibited mostly intracellular distribution and was occasionally observed in cell-cell junctions. Double patch clamp analysis demonstrated that Cx32N175Y did not form functional homotypic channels, and dye uptake assay indicated that Cx32N175Y could form hemichannels on the cell surface similar to wild-type Cx32. When Cx32N175Y-GFP- and Cx26-RFP-transfected cells were co-cultured, no colocalization was found at the cell-cell junctions between Cx32N175Y-GFP- and Cx26-RFP-expressing cells; also, no functional Cx32N175Y-GFP/Cx26-RFP heterotypic channels were identified. Both our modeling and experimental data suggest that Asn(175) of Cx32 is a critical residue for heterotypic docking and functional gap junction channel formation between the Cx32 and Cx26 hemichannels.  相似文献   

17.
Abrupt developmental changes occur in structural form and function of connexin (Cx) channels in the mouse mammary gland. Microarray study shows that the principal connexin isoform in epithelial cells during pregnancy is Cx26, up-regulated and persisting from the virgin. After parturition, there is rapid induction of Cx32. In epithelial plasma membranes, size exclusion chromatography reveals that Cx32 organizes initially with Cx26 as heteromeric (Cx26-Cx32) hemichannels and later in heteromeric and homomeric Cx32 channels. Dramatic alterations of connexin channel function following these developmental changes in channel composition are characterized using native channels reconstituted into liposomes. Changes to channel stoichiometry increase the allowable physical size limits of permeant after parturition; the new Cx32 channels are wider than channels containing Cx26. Most remarkably, heteromeric Cx26-Cx32 channels are selectively permeability to adenosine 3',5' cyclic phosphate (cAMP), guanosine 3',5' cyclic phosphate (cGMP), and inositol 1,4,5-triphosphate (IP(3)), whereas homomeric channels are not. Homomeric Cx26 and heteromeric channels with high Cx26/Cx32 stoichiometry are also inhibited by taurine, an osmolyte playing a key role in milk protein synthesis. Taurine effect is reduced where heteromeric channels contain Cx32 > Cx26 and eliminated when channels contain only Cx32. Connexin channel stoichiometry, permeability, and chemical gating character change in precisely the desired fashion after parturition to maximize molecular and electrical coupling to support coordinated milk secretion.  相似文献   

18.
The structure of the pore is critical to understanding the molecular mechanisms underlying selective permeation and voltage-dependent gating of channels formed by the connexin gene family. Here, we describe a portion of the pore structure of unapposed hemichannels formed by a Cx32 chimera, Cx32*Cx43E1, in which the first extracellular loop (E1) of Cx32 is replaced with the E1 of Cx43. Cysteine substitutions of two residues, V38 and G45, located in the vicinity of the border of the first transmembrane (TM) domain (TM1) and E1 are shown to react with the thiol modification reagent, MTSEA–biotin-X, when the channel resides in the open state. Cysteine substitutions of flanking residues A40 and A43 do not react with MTSEA–biotin-X when the channel resides in the open state, but they react with dibromobimane when the unapposed hemichannels are closed by the voltage-dependent “loop-gating” mechanism. Cysteine substitutions of residues V37 and A39 do not appear to be modified in either state. Furthermore, we demonstrate that A43C channels form a high affinity Cd2+ site that locks the channel in the loop-gated closed state. Biochemical assays demonstrate that A43C can also form disulfide bonds when oocytes are cultured under conditions that favor channel closure. A40C channels are also sensitive to micromolar Cd2+ concentrations when closed by loop gating, but with substantially lower affinity than A43C. We propose that the voltage-dependent loop-gating mechanism for Cx32*Cx43E1 unapposed hemichannels involves a conformational change in the TM1/E1 region that involves a rotation of TM1 and an inward tilt of either each of the six connexin subunits or TM1 domains.  相似文献   

19.
1. Hemichannels formed by connexin26 (Cx26) on the horizontal cell dendrites that invaginate cone terminals in the vertebrate retina have been implicated in the feedback mechanism by which horizontal cells regulate transmitter release from cone photoreceptors. However, their membrane properties had not been studied previously, and it was unclear whether they could subserve their purported function at the membrane potentials over which horizontal cells operate. 2. We used the two-electrode voltage clamp technique to record the membrane currents and pharmacological properties of Cx26 hemichannels formed in the Xenopus oocyte expression system. 3. Oocytes expressing Cx26 exhibited large membrane conductances over a broad range of hyperpolarizing and depolarizing membrane potentials, and displayed little evidence of voltage-dependent gating, indicating that the hemichannels are constitutively open. The Cx26-mediated nonjunctional currents were relatively insensitive to quinine, a cinchona alkaloid that opens hemichannels formed by several other connexins. However, the hemichannel currents were blocked by carbenoxolone, a rise in extracellular calcium, or lowering intracellular pH. The currents could also be suppressed by reducing extracellular pH, and by the chloride channel blocker NPPB through its direct interaction with Cx26 hemichannels. 4. These findings provide a basis with which to evaluate the in situ pharmacological studies that attempt to assess the putative role of Cx26 hemichannels in the feedback pathway in the distal retina.  相似文献   

20.
In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号