首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

γ-Secretase is an intramembrane aspartyl protease whose cleavage of the amyloid precursor protein (APP) generates the amyloid β-peptide (Aβ) and the APP intracellular domain. Aβ is widely believed to have a causative role in Alzheimer''s disease pathogenesis, and therefore modulation of γ-secretase activity has become a therapeutic goal. Besides APP, more than 50 substrates of γ-secretase with different cellular functions during embryogenesis as well as adulthood have been revealed. Prior to γ-secretase cleavage, substrates are ectodomain shedded, producing membrane bound C-terminal fragments (CTFs).

Principal Findings

Here, we investigated γ-secretase cleavage of five substrates; APP, Notch1, N-cadherin, ephrinB and p75 neurotrophin receptor (p75-NTR) in membranes isolated from embryonic, young or old adult rat brain by analyzing the release of the corresponding intracellular domains (ICDs) or Aβ40 by western blot analysis and ELISA respectively. The highest levels of all ICDs and Aβ were produced by embryonic membranes. In adult rat brain only cleavage of APP and Notch1 could be detected and the Aβ40 and ICD production from these substrates was similar in young and old adult rat brain. The CTF levels of Notch1, N-cadherin, ephrinB and p75-NTR were also clearly decreased in the adult brain compared to embryonic brain, whereas the APP CTF levels were only slightly decreased.

Conclusions

In summary our data suggests that γ-secretase dependent ICD production is down-regulated in the adult brain compared to embryonic brain. In addition, the present approach may be useful for evaluating the specificity of γ-secretase inhibitors.  相似文献   

2.
The diverse roles of protein kinase C-δ (PKCδ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKCδ signaling responses. PKCδ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKCδ is released from membranes as a Tyr313-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKCδ''s Tyr313-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKCδ''s enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser359. We show that wild-type (WT) PKCδ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphomimetic or bulky substitutions at Ser359. In contrast, PKCδ-S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser359 phosphorylation on native PKCδ and that PKCδ-S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr313 docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKCδ catalytic activity.  相似文献   

3.

Background

PKCδ expressed in neutrophils is implicated in promoting reperfusion injury after ischemic stroke. To understand the molecular and cellular actions of PKCδ, we employed a chemical-genetics approach to identify PKCδ substrates in neutrophils.

Results

We recently generated knock-in mice endogenously expressing analog-specific PKCδ (AS-PKCδ) that can utilize ATP analogs as phosphate donors. Using neutrophils isolated from the knock-in mice, we identified several PKCδ substrates, one of which was lipocalin-2 (LCN2), which is an iron-binding protein that can trigger apoptosis by reducing intracellular iron concentrations. We found that PKCδ phosphorylated LCN2 at T115 and this phosphorylation was reduced in Prkcd−/− mice. PKCδ colocalized with LCN2 in resting and stimulated neutrophils. LCN2 release from neutrophils after cerebral ischemia was reduced in PKCδ null mice.

Conclusions

These findings suggest that PKCδ phosphorylates LCN2 and mediates its release from neutrophils during ischemia-reperfusion injury.  相似文献   

4.
The presenilin/γ-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-β protein (Aβ) has made modulation of γ-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and β-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of γ-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by γ-secretase, we determined that besides a short ectodomain, γ-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for γ cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent γ-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which γ-secretase contributes.  相似文献   

5.
The presenilin/γ-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-β protein (Aβ) has made modulation of γ-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and β-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of γ-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by γ-secretase, we determined that besides a short ectodomain, γ-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for γ cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent γ-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which γ-secretase contributes.  相似文献   

6.
The Coxsackievirus and Adenovirus Receptor (CAR) is a cell adhesion molecule originally characterized as a virus receptor but subsequently shown to be involved in physiological processes such as neuronal and heart development, epithelial tight junction integrity, and tumour suppression. Proteolysis of cell adhesion molecules and a wide variety of other cell surface proteins serves as a mechanism for protein turnover and, in some cases, cell signaling. Metalloproteases such as A Disintegrin and Metalloprotease (ADAM) family members cleave cell surface receptors to release their substrates’ ectodomains, while the presenilin/ɣ-secretase complex mediates regulated intramembrane proteolysis (RIP), releasing intracellular domain fragments from the plasma membrane. In the case of some substrates such as Notch and amyloid precursor protein (APP), the released intracellular domains enter the nucleus to modulate gene expression. We report that CAR ectodomain is constitutively shed from glioma cells and developing neurons, and is also shed when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. We identified ADAM10 as a sheddase of CAR using assays involving shRNA knockdown and rescue, overexpression of wild-type ADAM10 and inhibition of ADAM10 activity by addition of its prodomain. In vitro peptide cleavage, mass spectrometry and mutagenesis revealed the amino acids M224 to L227 of CAR as the site of ADAM10-mediated ectodomain cleavage. CAR also undergoes RIP by the presenilin/γ-secretase complex, and the intracellular domain of CAR enters the nucleus. Ectodomain shedding is a prerequisite for RIP of CAR. Thus, CAR belongs to the increasing list of cell surface molecules that undergo ectodomain shedding and that are substrates for ɣ-secretase-mediated RIP.  相似文献   

7.
Signal regulatory protein α (SIRPα) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRPα ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-κB signaling in macrophages. Here we observed that proteolysis of SIRPα during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRPα fragment by γ-secretase was identified. Ectopic expression of a SIRPα mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-κB pathway and suppressed STAT1 phosphorylation in response to TNFα to a greater extent than expression of wild-type SIRPα. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRPα fragments in cells resulted in enhanced STAT-1 and NF-κB pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and γ-secretase on SIRPα cleavage promote inflammatory signaling.  相似文献   

8.
The haptoglobin-hemoglobin receptor CD163 and proTNF-α are transmembrane macrophage proteins subjected to cleavage by the inflammation-responsive protease ADAM17. This leads to release of soluble CD163 (sCD163) and bioactive TNF-α. Sequence comparison of the juxtamembrane region identified similar palindromic sequences in human CD163 (1044Arg-Ser-Ser-Arg) and proTNF-α (78Arg-Ser-Ser-Ser-Arg). In proTNF-α the Arg-Ser-Ser-Ser-Arg sequence is situated next to the previously established ADAM17 cleavage site. Site-directed mutagenesis revealed that the sequences harbor essential information for efficient cleavage of the two proteins upon ADAM17 stimulation. This was further evidenced by analysis of mouse CD163 that, like CD163 in other non-primates, does not contain the palindromic CD163 sequence in the juxtamembrane region. Mouse CD163 resisted endotoxin- and phorbol ester-induced shedding, and ex vivo analysis of knock-in of the Arg-Ser-Ser-Arg sequence in mouse CD163 revealed a receptor shedding comparable with that of human CD163. In conclusion, we have identified an essential substrate motif for ADAM17-mediated CD163 and proTNF-α cleavage in macrophages. In addition, the present data indicate that CD163, by incorporation of this motif in late evolution, underwent a modification that allows for an instant down-regulation of surface CD163 expression and inhibition of hemoglobin uptake. This regulatory modality seems to have coincided with the evolution of an enhanced hemoglobin-protecting role of the haptoglobin-CD163 system in primates.  相似文献   

9.
Previously we reported that Wnt3a-dependent neurite outgrowth in Ewing sarcoma family tumor cell lines was mediated by Frizzled3, Dishevelled (Dvl), and c-Jun N-terminal kinase (Endo, Y., Beauchamp, E., Woods, D., Taylor, W. G., Toretsky, J. A., Uren, A., and Rubin, J. S. (2008) Mol. Cell. Biol. 28, 2368–2379). Subsequently, we observed that Dvl2/3 phosphorylation correlated with neurite outgrowth and that casein kinase 1δ, one of the enzymes that mediate Wnt3a-dependent Dvl phosphorylation, was required for neurite extension (Greer, Y. E., and Rubin, J. S. (2011) J. Cell Biol. 192, 993–1004). However, the functional relevance of Dvl phosphorylation in neurite outgrowth was not established. Dvl1 has been shown by others to be important for axon specification in hippocampal neurons via an interaction with atypical PKCζ, but the role of Dvl phosphorylation was not evaluated. Here we report that Ewing sarcoma family tumor cells express PKCι but not PKCζ. Wnt3a stimulated PKCι activation and caused a punctate distribution of pPKCι in the neurites and cytoplasm, with a particularly intense signal at the centrosome. Knockdown of PKCι expression with siRNA reagents blocked neurite formation in response to Wnt3a. Aurothiomalate, a specific inhibitor of PKCι/Par6 binding, also suppressed neurite extension. Wnt3a enhanced the co-immunoprecipitation of endogenous PKCι and Dvl2. Although FLAG-tagged wild-type Dvl2 immunoprecipitated with PKCι, a phosphorylation-deficient Dvl2 derivative did not. This derivative also was unable to rescue neurite outgrowth when endogenous Dvl2/3 was suppressed by siRNA (González-Sancho, J. M., Greer, Y. E., Abrahams, C. L., Takigawa, Y., Baljinnyam, B., Lee, K. H., Lee, K. S., Rubin, J. S., and Brown, A. M. (2013) J. Biol. Chem. 288, 9428–9437). Taken together, these results suggest that site-specific Dvl2 phosphorylation is required for Dvl2 association with PKCι. This interaction is likely to be one of the mechanisms essential for Wnt3a-dependent neurite outgrowth.  相似文献   

10.
11.
By the yeast two-hybrid screening of a rat brain cDNA library with the regulatory domain of protein kinase C ζ (PKCζ) as a bait, we have cloned a gene coding for a novel PKCζ-interacting protein homologous to the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth and fasciculation. The protein designated FEZ1 (fasciculation and elongation protein zeta-1) consisting of 393 amino acid residues shows a high Asp/Glu content and contains several regions predicted to form amphipathic helices. Northern blot analysis has revealed that FEZ1 mRNA is abundantly expressed in adult rat brain and throughout the developmental stages of mouse embryo. By the yeast two-hybrid assay with various deletion mutants of PKC, FEZ1 was shown to interact with the NH2-terminal variable region (V1) of PKCζ and weakly with that of PKCε. In the COS-7 cells coexpressing FEZ1 and PKCζ, FEZ1 was present mainly in the plasma membrane, associating with PKCζ and being phosphorylated. These results indicate that FEZ1 is a novel substrate of PKCζ. When the constitutively active mutant of PKCζ was used, FEZ1 was found in the cytoplasm of COS-7 cells. Upon treatment of the cells with a PKC inhibitor, staurosporin, FEZ1 was translocated from the cytoplasm to the plasma membrane, suggesting that the cytoplasmic translocation of FEZ1 is directly regulated by the PKCζ activity. Although expression of FEZ1 alone had no effect on PC12 cells, coexpression of FEZ1 and constitutively active PKCζ stimulated the neuronal differentiation of PC12 cells. Combined with the recent finding that a human FEZ1 protein is able to complement the function of UNC-76 necessary for normal axonal bundling and elongation within axon bundles in the nematode, these results suggest that FEZ1 plays a crucial role in the axon guidance machinery in mammals by interacting with PKCζ.  相似文献   

12.
β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease with a lumenal active site that sheds the ectodomains of membrane proteins through juxtamembrane proteolysis. BACE1 has been studied principally for its role in Alzheimer''s disease as the β-secretase responsible for generating the amyloid-β protein. Emerging evidence from mouse models has identified the importance of BACE1 in myelination and cognitive performance. However, the substrates that BACE1 processes to regulate these functions are unknown, and to date only a few β-secretase substrates have been identified through candidate-based studies. Using an unbiased approach to substrate identification, we performed quantitative proteomic analysis of two human epithelial cell lines stably expressing BACE1 and identified 68 putative β-secretase substrates, a number of which we validated in a cell culture system. The vast majority were of type I transmembrane topology, although one was type II and three were GPI-linked proteins. Intriguingly, a preponderance of these proteins are involved in contact-dependent intercellular communication or serve as receptors and have recognized roles in the nervous system and other organs. No consistent sequence motif predicting BACE1 cleavage was identified in substrates versus non-substrates. These findings expand our understanding of the proteins and cellular processes that BACE1 may regulate, and suggest possible mechanisms of toxicity arising from chronic BACE1 inhibition.  相似文献   

13.
14.
Protein kinase Cδ (PKCδ) is proteolytically cleaved and activated at the onset of apoptosis induced by DNA-damaging agents, tumor necrosis factor, and anti-Fas antibody. A role for PKCδ in apoptosis is supported by the finding that overexpression of the catalytic fragment of PKCδ (PKCδ CF) in cells is associated with the appearance of certain characteristics of apoptosis. However, the functional relationship between PKCδ cleavage and induction of apoptosis is unknown. The present studies demonstrate that PKCδ associates constitutively with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The results show that PKCδ CF phosphorylates DNA-PKcs in vitro. Interaction of DNA-PKcs with PKCδ CF inhibits the function of DNA-PKcs to form complexes with DNA and to phosphorylate its downstream target, p53. The results also demonstrate that cells deficient in DNA-PK are resistant to apoptosis induced by overexpressing PKCδ CF. These findings support the hypothesis that functional interactions between PKCδ and DNA-PK contribute to DNA damage-induced apoptosis.  相似文献   

15.
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.  相似文献   

16.
The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cδ (PKCδ). On inhibition of CaM, PKCδ promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCδ impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCδ-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCδ. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCδ, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCδ organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR.  相似文献   

17.
18.
ADAM proteases are implicated in multiple diseases, but no drugs based on ADAM inhibition exist. Most of the ADAM inhibitors developed to date feature zinc-binding moieties that target the active site zinc, which leads to a lack of selectivity and off target toxicity. Targeting secondary substrate binding sites (exosites) can potentially work as an alternative strategy for drug discovery; however, there are only a few reports of potential exosites in ADAM protease structures. In the study presented here, we utilized a series of TNFα-based substrates to probe ADAM10 and 17 interactions with its canonical substrate to identify the structural features that determine ADAM protease substrate specificity. We found that noncatalytic domains of ADAM17 did not directly bind the substrates used in the study but affected the binding nevertheless, most likely because of steric hindrance. Additionally, noncatalytic domains of ADAM17 affected the size/shape of the carbohydrate-binding pocket contained within the catalytic domain of ADAM17. This suggests that noncatalytic domains of ADAM17 play a role in substrate specificity and might help explain differences in substrate repertoires of ADAM17 and its closest homologue, ADAM10. We also addressed the question of which substrate features can affect ADAM protease specificity. We found that all ADAM proteases tested (i.e., ADAM10, 12, and 17) significantly decreased activity when the TNFα-derived sequence was induced into α-helical conformation, suggesting that conformation plays a role in determining ADAM protease substrate specificity. These findings can help in the discovery of ADAM isoform- and substrate-specific inhibitors.  相似文献   

19.
The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号