首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin–magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV.  相似文献   

3.
4.
5.
Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent.  相似文献   

6.
Consumption of raw oysters is an exposure route for human norovirus (NoV) and hepatitis A virus (HAV). Therefore, efficient postharvest oyster treatment technology is needed to reduce public health risks. This study evaluated the inactivation of HAV and the NoV research surrogate, murine norovirus-1 (MNV-1), in oysters (Crassostrea virginica) by electron beam (E-beam) irradiation. The reduction of potential infection risks was quantified for E-beam irradiation technology employed on raw oysters at various virus contamination levels. The E-beam dose required to reduce the MNV and HAV titer by 90% (D10 value) in whole oysters was 4.05 (standard deviations [SD], ±0.63) and 4.83 (SD, ±0.08) kGy, respectively. Microbial risk assessment suggests that if a typical serving of 12 raw oysters was contaminated with 105 PFU, a 5-kGy treatment would achieve a 12% reduction (from 4.49 out of 10 persons to 3.95 out of 10 persons) in NoV infection and a 16% reduction (from 9.21 out of 10 persons to 7.76 out of 10 persons) in HAV infections. If the serving size contained only 102 PFU of viruses, a 5-kGy treatment would achieve a 26% reduction (2.74 out of 10 persons to 2.03 out of 10 persons) of NoV and 91% reduction (2.1 out of 10 persons to 1.93 out of 100 persons) of HAV infection risks. This study shows that although E-beam processing cannot completely eliminate the risk of viral illness, infection risks can be reduced.  相似文献   

7.
8.
Noroviruses (NoVs) are a leading cause of epidemic and sporadic cases of acute gastroenteritis worldwide. Oysters are well recognized as the main vectors of environmentally transmitted NoVs, and disease outbreaks linked to oyster consumption have been commonly observed. Here, to quantify the genetic diversity, temporal distribution, and circulation of oyster-related NoVs on a global scale, 1,077 oyster-related NoV sequences deposited from 1983 to 2014 were downloaded from both NCBI GenBank and the NoroNet outbreak database and were then screened for quality control. A total of 665 sequences with reliable information were obtained and were subsequently subjected to genotyping and phylogenetic analyses. The results indicated that the majority of oyster-related NoV sequences were obtained from coastal countries and regions and that the numbers of sequences in these regions were unevenly distributed. Moreover, >80% of human NoV genotypes were detected in oyster samples or oyster-related outbreaks. A higher proportion of genogroup I (GI) (34%) was observed for oyster-related sequences than for non-oyster-related outbreaks, where GII strains dominated with an overwhelming majority of >90%, indicating that the prevalences of GI and GII are different in humans and oysters. In addition, a related convergence of the circulation trend was found between oyster-related NoV sequences and human pandemic outbreaks. This suggests that oysters not only act as a vector of NoV through environmental transmission but also serve as an important reservoir of human NoVs. These results highlight the importance of oysters in the persistence and transmission of human NoVs in the environment and have important implications for the surveillance of human NoVs in oyster samples.  相似文献   

9.
10.
Human norovirus (NoV) is the leading cause of nonbacterial acute gastroenteritis epidemics worldwide. High-pressure processing (HPP) has been considered a promising nonthermal processing technology to inactivate food- and waterborne viral pathogens. Due to the lack of an effective cell culture method for human NoV, the effectiveness of HPP in inactivating human NoV remains poorly understood. In this study, we evaluated the effectiveness of HPP in disrupting the capsid of human NoV based on the structural and functional integrity of virus-like particles (VLPs) and histo-blood group antigen (HBGA) receptor binding assays. We found that pressurization at 500 to 600 MPa for 2 min, a pressure level that completely inactivates murine norovirus and feline calicivirus, was not sufficient to disrupt the structure and function of human NoV VLPs, even with a holding time of 60 min. Degradation of VLPs increased commensurate with increasing pressure levels more than increasing time. The times required for complete disruption of human NoV VLPs at 700, 800, and 900 MPa were 45, 15, and 2 min, respectively. Human NoV VLPs were more resistant to HPP in their ability to bind type A than type B and O HBGAs. Additionally, the 23-nm VLPs appeared to be much more stable than the 38-nm VLPs. Taken together, our results demonstrated that the human NoV capsid is highly resistant to HPP. While human NoV VLPs may not be fully representative of viable human NoV, destruction of the VLP capsid is highly suggestive of a typical response for viable human NoV.  相似文献   

11.
Human noroviruses (NoVs) are a significant cause of nonbacterial gastroenteritis worldwide, with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict NoV inactivation. The NoV surrogates murine NoV (MNV), feline calicivirus (FCV), poliovirus (PV), and male-specific coliphage MS2, in conjunction with Norwalk virus (NV), were spiked into surface water samples (n = 9) and groundwater samples (n = 6). Viral persistence was monitored at 25°C and 4°C by periodically analyzing virus infectivity (for all surrogate viruses) and nucleic acid (NA) for all tested viruses. FCV infectivity reduction rates were significantly higher than those of the other surrogate viruses. Infectivity reduction rates were significantly higher than NA reduction rates at 25°C (0.18 and 0.09 log10/day for FCV, 0.13 and 0.10 log10/day for PV, 0.12 and 0.06 log10/day for MS2, and 0.09 and 0.05 log10/day for MNV) but not significant at 4°C. According to a multiple linear regression model, the NV NA reduction rates (0.04 ± 0.01 log10/day) were not significantly different from the NA reduction rates of MS2 (0.05 ± 0.03 log10/day) and MNV (0.04 ± 0.03 log10/day) and were significantly different from those of FCV (0.08 ± 0.03 log10/day) and PV (0.09 ± 0.03 log10/day) at 25°C. In conclusion, MNV shows great promise as a human NoV surrogate due to its genetic similarity and environmental stability. FCV was much less stable and thus questionable as an adequate surrogate for human NoVs in surface water and groundwater.  相似文献   

12.
Inactivation of a Norovirus by High-Pressure Processing   总被引:2,自引:1,他引:1       下载免费PDF全文
Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20°C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log10 PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5°C; a 5-min pressure treatment of 350 MPa at 30°C inactivated 1.15 log10 PFU of virus, while the same treatment at 5°C resulted in a reduction of 5.56 log10 PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5°C and 20°C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5°C was sufficient to inactivate 4.05 log10 PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.  相似文献   

13.
Aims: To investigate the comparative elimination of three different human enterically transmitted viruses [i.e. hepatitis A virus (HAV), norovirus (NoV) and poliovirus (PV)] and inactivation of HAV and PV by Pacific oysters. Methods and Results: New Zealand grown Pacific oysters (Crassostrea gigas) were allowed to bioaccumulate HAV, NoV and PV. Samples of oyster gut, faeces and pseudofaeces were then analysed by using real‐time RT‐PCR to determine the amount of viral RNA and cell culture methods to identify changes in the number of plaque forming units. The results suggest that the majority of the PV present in the oyster gut and oyster faeces is noninfectious, while in contrast, most of the HAV detected in the oyster gut are infectious. Depuration experiments identified a large drop in the count of PV in the gut over a 23‐h cleansing period, whereas the levels of HAV and NoV did not significantly decrease. Conclusions: Human enterically transmitted viruses are eliminated and inactivated at different rates by Pacific oysters. Significance and Impact of Study: The research presented in this article has implications for risk management techniques that are used to improve the removal of infectious human enteric viruses from bivalve molluscs.  相似文献   

14.
Noroviruses (NoV) are major agents of acute gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Previous studies showed that some human strains bind to oyster tissues through carbohydrate ligands that are similar to their human receptors. Thus, based on presentation of shared norovirus carbohydrate ligands, oysters could selectively concentrate animal strains with increased ability to overcome species barriers. In comparison with human GI and GII strains, bovine GIII NoV strains, although frequently detected in bovine feces and waters of two estuaries of Brittany, were seldom detected in oysters grown in these estuaries. Characterization of the carbohydrate ligand from a new GIII strain indicated recognition of the alpha-galactosidase (α-Gal) epitope not expressed by humans, similar to the GIII.2 Newbury2 strain. This ligand was not detectable on oyster tissues, suggesting that oysters may not be able to accumulate substantial amounts of GIII strains due to the lack of shared carbohydrate ligand and that they should be unable to contribute to select GIII strains with an increased ability to recognize humans.Environmental sources of animal pathogens and, most specifically, of RNA viruses may constitute substantial risk factors for cross-species transmission to humans (14). In this context, noroviruses (NoVs) infecting cattle could be of importance owing to the high densities of cows bred in areas of human activities. The ability of shellfish to concentrate pathogens released in seawater raises questions about the transmission of animal NoVs to humans through oyster consumption, but so far very few studies have compared water and shellfish contamination. One of the first such studies, conducted more than 30 years ago, comparing the presence of enterovirus by cell culture in water and oysters yielded about the same frequency of positive water (59%) and shellfish samples (35%) (12). More recently, phages of Bacteroides fragilis and Salmonella detected in sewage effluents were also detected in receiving waters and oysters (6). Human NoVs were detected in 75% of river water samples and in 60% of oyster beds (38). Only one study reported the detection of porcine norovirus in 15% of shellfish collected from the U.S. market but no information from the surrounding water was available (8).NoVs are small nonenveloped viruses approximately 30 nm in diameter with a positive-sense, single-stranded RNA genome. They belong to the Caliciviridae family, and in humans they are the most frequent cause of diarrhea outbreaks in all age groups (11, 28). They are classified in five genogroups, with human strains belonging to genogroups I, II, and IV, GIII strains infecting cattle, and murine strains classified in GV (45). Recently, two new genogroups (VI and VII) infecting animals have been proposed (29). Based on analysis of the open reading frame 2 (ORF2) sequence encoding the capsid protein, high diversity has been observed, with the result that genogroups have been subdivided into clusters, including up to 19 for GII strains. Porcine NoVs have been classified into three clusters of GII (GII.11, GII.18, and GII.19) while all bovine strains of NoV described so far belong to GIII (25, 29, 41, 45). The first bovine strain, Bo/Newbury2/1976/UK (NB2), was isolated in the United Kingdom from calves with diarrhea (43). Later, another distinct genotype of bovine NoV, Bo/Jena/1978/GER, was identified in Germany (21). These two strains represent the prototypes of the GIII.2 and GIII.1 genotypes, respectively.Although many gaps persist in our understanding of human NoV infections and pathogenesis, recent advances demonstrated a genetically determined host susceptibility based on histo-blood group antigen diversity. Various human NoV strains attach to distinct carbohydrates of the ABH and Lewis histo-blood group family, and evidence accumulated from volunteer studies and outbreaks indicates that binding to these carbohydrates is required for infection (19, 35). In addition, it was recently shown that the prototype bovine GIII.2 strain binds to a related carbohydrate structure which is absent from human tissues (44). Similarly, it was also demonstrated that some strains of either GI or GII specifically attach to oysters tissues through recognition of histo-blood group antigens (HBGAs) (17, 22, 36). This finding could help explain other observations, such as the rapid contamination of oysters, long persistence of viral particles, and, consequently, shellfish-borne outbreaks (3, 16). It additionally suggests that oysters may not merely act as passive filters randomly accumulating virus particles but, instead, may also act as selective filters specifically concentrating strains by recognition of carbohydrate epitopes shared with humans. As shellfish are grown in coastal waters frequently exposed to contamination from bovine in neighboring fields, they may be contaminated by these animal strains. This raises the issue of the potential role of oysters in the emergence of bovine NoVs into the human population.The aim of our study is to provide quantitative data on the presence of GIII NoV strains in comparison with GI and GII strains in bovine feces, rivers, or estuarine waters as well as shellfish from an area of both high cattle density and high-density oyster breeding. The possibility of GIII strain-specific binding to carbohydrate ligands of oyster tissues that may be shared with cows and humans is additionally examined. The results are discussed in the context of the environmental data in order to provide a first appreciation of the risk of GIII NoV transmission to humans through oyster consumption.  相似文献   

15.
Over the last fifteen years there have been five pandemics of norovirus (NoV) associated gastroenteritis, and the period of stasis between each pandemic has been progressively shortening. NoV is classified into five genogroups, which can be further classified into 25 or more different human NoV genotypes; however, only one, genogroup II genotype 4 (GII.4), is associated with pandemics. Hence, GII.4 viruses have both a higher frequency in the host population and greater epidemiological fitness. The aim of this study was to investigate if the accuracy and rate of replication are contributing to the increased epidemiological fitness of the GII.4 strains. The replication and mutation rates were determined using in vitro RNA dependent RNA polymerase (RdRp) assays, and rates of evolution were determined by bioinformatics. GII.4 strains were compared to the second most reported genotype, recombinant GII.b/GII.3, the rarely detected GII.3 and GII.7 and as a control, hepatitis C virus (HCV). The predominant GII.4 strains had a higher mutation rate and rate of evolution compared to the less frequently detected GII.b, GII.3 and GII.7 strains. Furthermore, the GII.4 lineage had on average a 1.7-fold higher rate of evolution within the capsid sequence and a greater number of non-synonymous changes compared to other NoVs, supporting the theory that it is undergoing antigenic drift at a faster rate. Interestingly, the non-synonymous mutations for all three NoV genotypes were localised to common structural residues in the capsid, indicating that these sites are likely to be under immune selection. This study supports the hypothesis that the ability of the virus to generate genetic diversity is vital for viral fitness.  相似文献   

16.
In this paper we describe a biological indicator which can be used to study the behavior of Vibrio vulnificus, an important molluscan shellfish-associated human pathogen. A V. vulnificus ATCC 27562 derivative that expresses green fluorescent protein (GFP) and kanamycin resistance was constructed using conjugation. Strain validation was performed by comparing the GFP-expressing strain (Vv-GFP) and the wild-type strain (Vv-WT) with respect to growth characteristics, heat tolerance (45°C), freeze-thaw tolerance (−20o and −80°C), acid tolerance (pH 5.0, 4.0, and 3.5), cold storage tolerance (5°C), cold adaptation (15°C), and response to starvation. Levels of recovery were evaluated using nonselective medium (tryptic soy agar containing 2% NaCl) with and without sodium pyruvate. The indicator strain was subsequently used to evaluate the survival of V. vulnificus in oysters exposed to organic acids (citric and acetic acids) and various cooling regimens. In most cases, Vv-GFP was comparable to Vv-WT with respect to growth and survival upon exposure to various biological stressors; when differences between the GFP-expressing and parent strains occurred, they usually disappeared when sodium pyruvate was added to media. When V. vulnificus was inoculated into shellstock oysters, the counts dropped 2 log10 after 11 to 12 days of refrigerated storage, regardless of the way in which the oysters were initially cooled. Steeper population declines after 12 days of refrigerated storage were observed for both iced and refrigerated products than for slowly cooled product and product held under conservative harvest conditions. By the end of the refrigeration storage study (22 days), the counts of Vv-GFP in iced and refrigerated oysters had reached the limit of detection (102 CFU/oyster), but slowly cooled oysters and oysters stored under conservative harvest conditions still contained approximately 103 and >104 CFU V. vulnificus/oyster by day 22, respectively. The Vv-GFP levels in the oyster meat remained stable for up to 24 h when the meat was exposed to acidic conditions at various pH values. Ease of detection and comparability to the wild-type parent make Vv-GFP a good candidate for use in studying the behavior of V. vulnificus upon exposure to sublethal stressors that might be encountered during postharvest handling of molluscan shellfish.  相似文献   

17.
Analyses of survival data of a mixture of Salmonella spp. at fixed temperatures between 55°C (131°F) and 71.1°C (160°F) in ground beef matrices containing concentrations of salt between 0 and 4.5%, concentrations of sodium pyrophosphate (SPP) between 0 and 0.5%, and concentrations of sodium lactate (NaL) between 0 and 4.5% indicated that heat resistance of Salmonella increases with increasing levels of SPP and salt, except that, for salt, for larger lethalities close to 6.5, the effect of salt was evident only at low temperatures (<64°C). NaL did not seem to affect the heat resistance of Salmonella as much as the effects induced by the other variables studied. An omnibus model for predicting the lethality for given times and temperatures for ground beef matrices within the range studied was developed that reflects the convex survival curves that were observed. However, the standard errors of the predicted lethalities from this models are large, so consequently, a model, specific for predicting the times needed to obtained a lethality of 6.5 log10, was developed, using estimated results of times derived from the individual survival curves. For the latter model, the coefficient of variation (CV) of predicted times range from about 6 to 25%. For example, at 60°C, when increasing the concentration of salt from 0 to 4.5%, and assuming that the concentration of SPP is 0%, the time to reach a 6.5-log10 relative reduction is predicted to increase from 20 min (CV = 11%) to 48 min (CV = 15%), a 2.4 factor (CV = 19%). At 71.1°C (160°F) the model predicts that more than 0.5 min is needed to achieve a 6.5-log10 relative reduction.  相似文献   

18.
19.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号