首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR) as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs) downstream of HIV gp120 binding to hMR.

Principal Findings

Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line) and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody.

Conclusion

hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the vaginal epithelium.  相似文献   

2.
Hepatitis C virus (HCV) infects approximately 40% of human immunodeficiency virus (HIV) patients, and the resulting hepatic dysfunction that occurs is the primary cause of death in patients with co-infection. We hypothesized that hepatocytes exposed to HCV and HIV proteins might be susceptible to injury via an "innocent bystander" mechanism. To assess this, we studied the effects of envelope proteins, E2 of HCV and gp120 of HIV, in model HepG2 cells. Upon co-stimulation with HCV-E2 and HIV-gp120, we observed a potent proinflammatory response with the induction of IL-8. Furthermore, our studies revealed that HCV-E2 and HIV-gp120 act collaboratively to trigger a specific set of downstream signaling pathways that include activation of p38 mitogen-activated protein (MAP) kinase and the tyrosine phosphatase, SHP2. Both specific inhibitors of p38 MAP kinase and sodium vanadate, a potent protein-tyrosine phosphatase inhibitor, blocked IL-8 production in a dose-dependent manner. The role of p38 MAP kinase and SHP2 was further defined by transiently overexpressing dominant negative mutants of these proteins into HepG2 cells. These studies revealed that overexpression of an inactive p38 MAP kinase or SHP2 mutant partially abrogated HCV-E2- and HIV-gp120-induced IL-8 production. Further studies revealed that IL-8 induction was not mediated through activation of the NF-kappa B pathway. However, HCV-E2 plus HIV-gp120 was shown to increase the DNA binding activity of AP-1. These results emphasize that expression of the proinflammatory chemokine IL-8, induced by HCV-E2 and HIV-gp120, may be mediated through p38 MAP kinase and SHP2 in an NF-kappa B-independent manner, albeit through AP-1-driven processes.  相似文献   

3.
The characterization of a discontinuous epitope in the C5 region of the HIV envelope protein HIV-gp120, recognized by 1331A, a human mAb, is reported. Regions involved in affinity binding in the HIV-gp120 molecule were identified by epitope excision/extraction methods followed by matrix assisted laser desorption-time of flight mass spectrometry. In epitope excision, the protein is bound in its native conformation to an immobilized Ab and then digested with proteolytic enzymes. In epitope extraction, the protein is first digested and subsequently allowed to react with the Ab. A series of proteolytic digestions of the 1331A/HIV-gp120 complex allowed the identification of protected amino acids in two noncontinuous regions of the C5 region of HIV-gp120. Interaction of the Ab with amino acids I487 and E507 of HIV-gp120 is essential for efficient binding. This is the first application of this approach for the identification and characterization of a discontinuous epitope. The results are consistent with molecular modeling results, indicating that these amino acids are located on opposite sides of a hydrophobic pocket. This pocket is thought to be of importance for the interaction of HIV-gp120 with the transmembrane protein HIV-gp41.  相似文献   

4.
Human immunodeficiency virus (HIV) infection is associated with a surprisingly high frequency of myocardial dysfunction. Potential mechanisms include direct effects of HIV, indirect effects mediated by cytokines, or a combination. We have previously reported that interleukin-1beta (IL-1beta) (500 U/ml) alone induced nitric oxide (NO) production by neonatal rat cardiac myocytes (CM). Effects of the HIV-1 envelope, glycoprotein120 (gp120), on inducible NO synthase (iNOS) in CM have not been previously reported. Unlike IL-1beta, recombinant HIV-gp120 (1 microgram/ml) alone failed to enhance NO production in CM (0.5 +/- 0.4 vs. 0.4 +/- 0.5 micromol/1.25 x 10(5) cells/48 h, gp120 vs. control, respectively; n = 12, P = not significant). However, the addition of gp120 to IL-1beta significantly enhanced iNOS mRNA expression (70 +/- 1.5 vs. 26 +/- 2.4 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), iNOS protein synthesis (42 +/- 1.4 vs. 18 +/- 0.8 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), and NO production (NO(2)(-)) (6.6 +/- 0.6 vs. 4.1 +/- 0.8 micromol/1.25 x 10(5) cells/48 h, IL-1beta + gp120 vs. IL-1beta, respectively; n = 12, P 相似文献   

5.
6.
Presently marketed vaginal barrier methods are cytotoxic and damaging to the vaginal epithelium and natural vaginal flora when used frequently. Novel noncytotoxic agents are needed to protect men and women from sexually transmitted diseases. One novel candidate is a mandelic acid condensation polymer, designated SAMMA. The spectrum and mechanism of antiviral activity were explored using clinical isolates and laboratory-adapted strains of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). SAMMA is highly effective against all CCR5 and CXCR4 isolates of HIV in primary human macrophages and peripheral blood mononuclear cells. SAMMA also inhibits infection of cervical epithelial cells by HSV. Moreover, it exhibits little or no cytotoxicity and has an excellent selectivity index. SAMMA, although not a sulfonated or sulfated polymer, blocks the binding of HIV and HSV to cells by targeting the envelope glycoproteins gp120 and gB-2, respectively, and also inhibits HSV entry postattachment. SAMMA is an excellent, structurally novel candidate microbicide that warrants further preclinical evaluation.  相似文献   

7.
The HIV envelope protein gp120 is heavily glycosylated, having 55% of its molecular mass contributed by N-linked carbohydrates. We investigated the role of N-glycosylation in presentation of HIV-gp120 to T cells. T cell clones obtained from humans immunized with a recombinant nonglycosylated form of HIV-gp120 (env 2-3) were studied for their ability to recognize both env 2-3 and glycosylated gp120. We found that 20% of CD4+ T cell clones specific for env 2-3 fail to respond to glycosylated gp120 of the same HIV isolate. Using synthetic peptides, we mapped one of the epitopes recognized by such clones to the sequence 292-300 (NESVAINCT), which contains two asparagines that are glycosylated in the native gp120. These findings suggest that N-linked carbohydrates within an epitope can function as hindering structures that limit Ag recognition by T lymphocytes.  相似文献   

8.
C Borchers  K B Tomer 《Biochemistry》1999,38(36):11734-11740
The initial event in infection by the human immunodeficiency virus type 1 (HIV-1) is the interaction of the viral envelope glycoprotein (HIV-gp120) with its primary cellular receptor, the glycoprotein CD4. Molecular structure information about the HIV-gp120/CD4 complex can provide information relevant to an understanding of the basic processes occurring in HIV infection and to development of therapies that can inhibit AIDS. Previous studies by sugar gradient sedimentation of the interaction of HIV-gp120 with a cytoplasmic domain truncated soluble CD4 (sCD4) suggested that a one-to-one complex was formed. The stoichiometry, however, of the sCD4/HIV-gp120 complex remained to be confirmed by an independent method because (i) recent X-ray examination revealed dimerization of sCD4 and (ii) the low resolution and low accuracy of molecular weight determination by sugar gradient sedimentation can lead to artifactual data. Therefore, in this study matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to determine the molecular mass of the complex of fully glycosylated HIV-gp120 and sCD4. A mass of 145 kDa was measured, which is exactly the sum of the molecular masses of one HIV-gp120 and one sCD4 molecule. Complexes of higher order of stoichiometry were not detected. Identical results were obtained by chemically cross-linking the HIV-gp120/sCD4 complex with subsequent analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and MALDI-MS. This study confirms the earlier suggestions of the stoichiometry of the sCD4/HIV-gp120 complex in solution and also demonstrates the potential of MALDI-MS in investigations of specific noncovalent complexes of glycoproteins.  相似文献   

9.
10.

Background

Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and Findings

This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or “minibody” was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1bal in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.

Conclusion

This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.  相似文献   

11.
Lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and lung infections are major causes of morbidity and mortality among HIV-infected patients even in the era of antiretroviral therapy (ART). Many of these diseases are strongly associated with smoking and smoking is more common among HIV-infected than uninfected people; however, HIV is an independent risk factor for chronic bronchitis, COPD, and asthma. The mechanism by which HIV promotes these diseases is unclear. Excessive airway mucus formation is a characteristic of these diseases and contributes to airway obstruction and lung infections. HIV gp120 plays a critical role in several HIV-related pathologies and we investigated whether HIV gp120 promoted airway mucus formation in normal human bronchial epithelial (NHBE) cells. We found that NHBE cells expressed the HIV-coreceptor CXCR4 but not CCR5 and produced mucus in response to CXCR4-tropic gp120. The gp120-induced mucus formation was blocked by the inhibitors of CXCR4, α7-nicotinic acetylcholine receptor (α7-nAChR), and γ-aminobutyric acid (GABA)AR but not the antagonists of CCR5 and epithelial growth factor receptor (EGFR). These results identify two distinct pathways (α7-nAChR-GABAAR and EGFR) for airway mucus formation and demonstrate for the first time that HIV-gp120 induces and regulates mucus formation in the airway epithelial cells through the CXCR4-α7-nAChR-GABAAR pathway. Interestingly, lung sections from HIV ± ART and simian immunodeficiency virus (SIV) ± ART have significantly more mucus and gp120-immunoreactivity than control lung sections from humans and macaques, respectively. Thus, even after ART, lungs from HIV-infected patients contain significant amounts of gp120 and mucus that may contribute to the higher incidence of obstructive pulmonary diseases in this population.  相似文献   

12.
The current knowledge about early innate immune responses at mucosal sites of human immunodeficiency virus (HIV) entry is limited but likely to be important in the design of effective HIV vaccines against heterosexual transmission. This study examined the temporal and anatomic relationship between virus replication, lymphocyte depletion, and cytokine gene expression levels in mucosal and lymphoid tissues in a vaginal-transmission model of HIV in rhesus macaques. The results of the study show that the kinetics of cytokine gene expression levels in the acute phase of infection are positively correlated with virus replication in a tissue. Thus, cytokine responses after vaginal simian immunodeficiency virus (SIV) inoculation are earliest and strongest in mucosal tissues of the genital tract and lowest in systemic lymphoid tissues. Importantly, the early cytokine response was dominated by the induction of proinflammatory cytokines, while the induction of cytokines with antiviral activity, alpha/beta interferon, occurred too late to prevent virus replication and dissemination. Thus, the early cytokine response favors immune activation, resulting in the recruitment of potential target cells for SIV. Further, unique cytokine gene expression patterns were observed in distinct anatomic locations with a rapid and persistent inflammatory response in the gut that is consistent with the gut being the major site of early CD4 T-cell depletion in SIV infection.  相似文献   

13.
Both quantitative and qualitative defects in immune functions in patients with AIDS may result from induction of programmed cell death or apoptosis of CD4 T lymphocytes. We postulate that neurohormones may interact with gp-120 that is shed during active HIV infection and cause apoptosis of immunocompetent cells leading to immunopathogenesis of HIV infections. In this study, we investigated the synergistic effect of cortisol plus HIV gp-120 in inducing apoptosis of lymphocytes from normal subjects. Total peripheral blood mononuclear cells and isolated CD4+ T-cells were treated with cortisol or gp-120 separately and in combination and RNA and DNA were extracted. RNA was reverse transcribed and amplified with specific primers for Fas and Fas ligand and analyzed on agarose gels. DNA was analyzed by gel electrophoresis for ladder formation, the hallmark for apoptosis, and Fas antigen expression by confocal microscopy. Results demonstrate that cortisol and gp-120 induce apoptosis of lymphocytes from normal donors as demonstrated by DNA ladder formation, TUNEL staining and Fas gene expression. Concentrations of cortisol and gp-120 that did not produce apoptosis when used separately, induced significant apoptosis when used in combination. Further, gp-120 induced DNA fragmentation was significant in the CD4+ T-cell subpopulation compared to the CD47 subpopulation. This study suggests that the stress-associated neurohormone, cortisol, synergizes with HIV peptides in causing apoptosis of normal lymphocytes. The synergistic effect of cortisol and gp- 120 in inducing apoptosis of lymphocytes is consistent with a model proposing that stress-associated and circulating HIV-1 derived soluble products may cause progression of HIV infections.  相似文献   

14.
Cyclin D1 gene induction is a key event in G1 phase progression. Our previous studies indicated that signaling to cyclin D1 is cell type-dependent because the timing of cyclin D1 gene expression in MCF10A mammary epithelial cells and mesenchymal cells such as fibroblasts and vascular smooth muscle cells is very different, with epithelial cells first expressing cyclin D1 in early rather than mid-G1 phase. In this report, we induced a mesenchymal phenotype in MCF10A cells by long-term exposure to TGF-beta and used the control and transitioned cells to examine cell type specificity of the signaling pathways that regulate cyclin D1 gene expression. We show that early-G1 phase cyclin D1 gene expression in MCF10A cells is under the control of Rac, whereas mid-G1 phase cyclin D1 induction requires parallel signaling from Rac and ERK, both in the control and transitioned cells. This combined requirement for Rac and ERK signaling is associated with an increased requirement for intracellular tension, Rb phosphorylation, and S phase entry. A similar co-regulation of cyclin D1 mRNA by Rac and ERK is seen in primary mesenchymal cells. Overall, our results reveal two mechanistically distinct phases of Rac-dependent cyclin D1 expression and emphasize that the acquisition of Rac/ERK co-dependence is required for the mid-G1 phase induction of cyclin D1 associated with S phase entry.  相似文献   

15.
During organogenesis, the middle to caudal portion of Müllerian epithelium differentiates into uterine and vaginal epithelia in females. Functional differentiation of uterine and vaginal epithelia occurs in adulthood, and is regulated by 17beta-estradiol (E(2)) and progesterone. In this report, the roles of mesenchyme/stroma in differentiation of uterine and vaginal epithelia were studied in tissue recombination experiments. At birth, Müllerian epithelium was negative for uterine and vaginal epithelial markers. Tissue recombinant experiments showed that uterine and vaginal gene expression patterns were induced in neonatal Müllerian epithelium by the respective mesenchymes. Differentiated adult uterine and vaginal epithelia did not change their original gene expression in response to heterotypic mesenchymal induction. In the adult vagina, E(2) induced expression of involucrin, a CCAAT/enhancer-binding protein beta and cytokeratin 1 via estrogen receptor alpha (ERalpha). Tissue recombination experiments with wild-type and ERalpha knockout mice demonstrated that epithelial gene expression is regulated by E(2) via epithelial-stromal tissue interactions. Uterine/vaginal heterotypic tissue recombinations demonstrated that functional differentiation of uterine and vaginal epithelia required organ-specific stromal factors. In contrast, stromal signals regulating epithelial proliferation appeared to be nonspecific in the uterus and vagina.  相似文献   

16.
Novel therapeutic approaches are needed to combat the rapid increase in HIV sexual transmission in women. The probiotic organism Lactobacillus reuteri RC-14 which safely colonizes the human vagina and prevents microbial infections, has been genetically modified to produce anti-HIV proteins which were capable of blocking the three main steps of HIV entry into human peripheral blood mononuclear cells. The HIV entry or fusion inhibitors were fused to the native expression and secretion signals of BspA, Mlp or Sep in L. reuteri RC-14 and the expression cassettes were stably inserted into the chromosome. L. reuteri RC-14 expressed the HIV inhibitors in cell wall-associated and secreted forms. L. reuteri RC-14 expressing CD4D1D2-antibody-like fusion proteins were able to bind single or dual tropic coreceptor-using HIV-1 primary isolates. This is the first study to show that a well-documented and proven human vaginal probiotic strain can express potent functional viral inhibitors, which may potentially lower the sexual transmission of HIV.  相似文献   

17.
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.  相似文献   

18.
The CXC chemokine gamma interferon (IFN-gamma)-inducible protein CXCL10/IP-10 is markedly elevated in cerebrospinal fluid and brain of individuals infected with human immunodeficiency virus type 1 (HIV-1) and is implicated in the pathogenesis of HIV-associated dementia (HAD). To explore the possible role of CXCL10/IP-10 in HAD, we examined the expression of this and other chemokines in the central nervous system (CNS) of transgenic mice with astrocyte-targeted expression of HIV gp120 under the control of the glial fibrillary acidic protein (GFAP) promoter, a murine model for HIV-1 encephalopathy. Compared with wild-type controls, CNS expression of the CC chemokine gene CCL2/MCP-1 and the CXC chemokine genes CXCL10/IP-10 and CXCL9/Mig was induced in the GFAP-HIV gp120 mice. CXCL10/IP-10 RNA expression was increased most and overlapped the expression of the transgene-encoded HIV gp120 gene. Astrocytes and to a lesser extent microglia were identified as the major cellular sites for CXCL10/IP-10 gene expression. There was no detectable expression of any class of IFN or their responsive genes. In astrocyte cultures, soluble recombinant HIV gp120 protein was capable of directly inducing CXCL10/IP-10 gene expression a process that was independent of STAT1. These findings highlight a novel IFN- and STAT1-independent mechanism for the regulation of CXCL10/IP-10 expression and directly link expression of HIV gp120 to the induction of CXCL10/IP-10 that is found in HIV infection of the CNS. Finally, one function of IP-10 expression may be the recruitment of leukocytes to the CNS, since the brain of GFAP-HIV gp120 mice had increased numbers of CD3(+) T cells that were found in close proximity to sites of CXCL10/IP-10 RNA expression.  相似文献   

19.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

20.
Influenza infection is a major cause of morbidity and mortality worldwide, especially during pandemics outbreaks. Emerging data indicate that phase II antioxidant enzyme pathways could play a role in virus-associated inflammation and immune clearance. While Nrf2-dependent gene expression is known to modify inflammation, a mechanistic role in viral susceptibility and clearance has yet to be elucidated. Therefore, we utilized differentiated human nasal epithelial cells (NEC) and an enzymatic virus-like particle entry assay, to examine the role Nrf2-dependent gene expression has on viral entry and replication. Herein, lentiviral vectors that express Nrf2-specific short hairpin (sh)-RNA effectively decreased both Nrf2 mRNA and Nrf2 protein expression in transduced human NEC from healthy volunteers. Nrf2 knockdown correlated with a significant increase in influenza virus entry and replication. Conversely, supplementation with the potent Nrf2 activators sulforaphane (SFN) and epigallocatechin gallate (EGCG) significantly decreased viral entry and replication. The suppressive effects of EGCG on viral replication were abolished in cells with knocked-down Nrf2 expression, suggesting a causal relationship between the EGCG-induced activation of Nrf2 and the ability to protect against viral infection. Interestingly, the induction of Nrf2 via nutritional supplements SFN and EGCG increased antiviral mediators/responses: RIG-I, IFN-β, and MxA at baseline in the absence of infection. Our data indicate that there is an inverse relationship between the levels of Nrf2 expression and the viral entry/replication. We also demonstrate that supplementation with Nrf2-activating antioxidants inhibits viral replication in human NEC, which may prove to be an attractive therapeutic intervention. Taken together, these data indicate potential mechanisms by which Nrf2-dependent gene expression regulates susceptibility to influenza in human epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号