首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abdominal aortic aneurysm (AAA) is a common disease among elderly individuals. However, the precise pathophysiology of AAA remains unknown. In AAA, an intraluminal thrombus prevents luminal perfusion of oxygen, allowing only the adventitial vaso vasorum (VV) to deliver oxygen and nutrients to the aortic wall. In this study, we examined changes in the adventitial VV wall in AAA to clarify the histopathological mechanisms underlying AAA. We found marked intimal hyperplasia of the adventitial VV in the AAA sac; further, immunohistological studies revealed proliferation of smooth muscle cells, which caused luminal stenosis of the VV. We also found decreased HemeB signals in the aortic wall of the sac as compared with those in the aortic wall of the neck region in AAA. The stenosis of adventitial VV in the AAA sac and the malperfusion of the aortic wall observed in the present study are new aspects of AAA pathology that are expected to enhance our understanding of this disease.  相似文献   

2.

Background

There is no proven medical approach to attenuating expansion and rupture of abdominal aortic aneurysms (AAAs). One approach that is currently being investigated is the use of doxycycline. Despite being primarily used as an antimicrobial drug, doxycycline has been proposed to function in reducing AAA expansion. Doxycycline is effective in reducing the formation in the most commonly used mouse models of AAAs when administered prior to the initiation of the disease. The purpose of the current study was to determine the effects of doxycycline on established AAAs when it was administered at a dose that produces therapeutic serum concentrations.

Methods and Results

LDL receptor −/− male mice fed a saturated-fat supplemented diet were infused with AngII (1,000 ng/kg/min) via mini-osmotic pumps for 28 days. Upon verification of AAA formation by noninvasive high frequency ultrasonography, mice were stratified based on aortic lumen diameters, and continuously infused with AngII while also administered either vehicle or doxycycline (100 mg/kg/day) in drinking water for 56 days. Administration of doxycycline led to serum drug concentrations of 2.3±0.6 µg/ml. Doxycycline administration had no effect on serum cholesterol concentrations and systolic blood pressures. Doxycycline administration did not prevent progressive aortic dilation as determined by temporal measurements of lumen dimensions using high frequency ultrasound. This lack of effect on AAA regression and progression was confirmed at the termination of the study by ex vivo measurements of maximal width of suprarenal aortas and AAA volumes. Also, doxycycline did not reduce AAA rupture. Medial and adventitial remodeling was not overtly changed by doxycycline as determined by immunostaining and histological staining.

Conclusions

Doxycycline administration did not influence AngII-induced AAA progression and aortic rupture when administered to mice with established AAAs.  相似文献   

3.
4.
5.
Vascular smooth muscle cell (VSMC) phenotypic switching plays a critical role in the formation of abdominal aortic aneurysms (AAAs). FoxO3a is a key suppressor of VSMC homeostasis. We found that in human and animal AAA tissues, FoxO3a was upregulated, SM22α and α-smooth muscle actin (α-SMA) proteins were downregulated and synthetic phenotypic markers were upregulated, indicating that VSMC phenotypic switching occurred in these diseased tissues. In addition, in cultured VSMCs, significant enhancement of FoxO3a expression was found during angiotensin II (Ang II)-induced VSMC phenotypic switching. In vivo, FoxO3a overexpression in C57BL/6J mice treated with Ang II increased the formation of AAAs, whereas FoxO3a knockdown exerted an inhibitory effect on AAA formation in ApoE−/− mice infused with Ang II. Mechanistically, FoxO3a overexpression significantly inhibited the expression of differentiated smooth muscle cell (SMC) markers, activated autophagy, the essential repressor of VSMC homeostasis, and promoted AAA formation. Our study revealed that FoxO3a promotes VSMC phenotypic switching to accelerate AAA formation through the P62/LC3BII autophagy signaling pathway and that therapeutic approaches that decrease FoxO3a expression may prevent AAA formation.Subject terms: Cell biology, Diseases  相似文献   

6.
Abdominal aortic aneurysms (AAAs) expand as a consequence of extracellular matrix destruction, and vascular smooth muscle cell (VSMC) depletion. Transforming growth factor (TGF)-beta 1 overexpression stabilizes expanding AAAs in rat. Cyclosporine A (CsA) promotes tissue accumulation and induces TGF -beta1 and, could thereby exert beneficial effects on AAA remodelling and expansion. In this study, we assessed whether a short administration of CsA could durably stabilize AAAs through TGF-beta induction. We showed that CsA induced TGF-beta1 and decreased MMP-9 expression dose-dependently in fragments of human AAAs in vitro, and in animal models of AAA in vivo. CsA prevented AAA formation at 14 days in the rat elastase (diameter increase: CsA: 131.9±44.2%; vehicle: 225.9±57.0%, P = 0.003) and calcium chloride mouse models (diameters: CsA: 0.72±0.14 mm; vehicle: 1.10±0.11 mm, P = .008), preserved elastic fiber network and VSMC content, and decreased inflammation. A seven day administration of CsA stabilized formed AAAs in rats seven weeks after drug withdrawal (diameter increase: CsA: 14.2±15.1%; vehicle: 45.2±13.7%, P = .017), down-regulated wall inflammation, and increased αSMA-positive cell content. Co-administration of a blocking anti-TGF-beta antibody abrogated CsA impact on inflammation, αSMA-positive cell accumulation and diameter control in expanding AAAs. Our study demonstrates that pharmacological induction of TGF-beta1 by a short course of CsA administration represents a new approach to induce aneurysm stabilization by shifting the degradation/repair balance towards healing.  相似文献   

7.
Abdominal aortic aneurysm (AAA) can be defined as a permanent and irreversible dilation of the infrarenal aorta. AAAs are often considered to be an aorta with a diameter 1.5 times the normal infrarenal aorta diameter. This paper describes a technique to manufacture realistic silicone AAA models for use with experimental studies. This paper is concerned with the reconstruction and manufacturing process of patient-specific AAAs. 3D reconstruction from computed tomography scan data allows the AAA to be created. Mould sets are then designed for these AAA models utilizing computer aided designcomputer aided manufacture techniques and combined with the injection-moulding method. Silicone rubber forms the basis of the resulting AAA model. Assessment of wall thickness and overall percentage difference from the final silicone model to that of the computer-generated model was performed. In these realistic AAA models, wall thickness was found to vary by an average of 9.21%. The percentage difference in wall thickness recorded can be attributed to the contraction of the casting wax and the expansion of the silicone during model manufacture. This method may be used in conjunction with wall stress studies using the photoelastic method or in fluid dynamic studies using a laser-Doppler anemometry. In conclusion, these patient-specific rubber AAA models can be used in experimental investigations, but should be assessed for wall thickness variability once manufactured.  相似文献   

8.

Background  

Aneurysms, in particular abdominal aortic aneurysms (AAA), form a significant portion of cardiovascular related deaths. There is much debate as to the most suitable tool for rupture prediction and interventional surgery of AAAs, and currently maximum diameter is used clinically as the determining factor for surgical intervention. Stress analysis techniques, such as finite element analysis (FEA) to compute the wall stress in patient-specific AAAs, have been regarded by some authors to be more clinically important than the use of a "one-size-fits-all" maximum diameter criterion, since some small AAAs have been shown to have higher wall stress than larger AAAs and have been known to rupture.  相似文献   

9.
Biomechanical studies suggest that one determinant of abdominal aortic aneurysm (AAA) rupture is related to the stress in the wall. In this regard, a reliable and accurate stress analysis of an in vivo AAA requires a suitable 3D constitutive model. To date, stress analysis conducted on AAA is mainly driven by isotropic tissue models. However, recent biaxial tensile tests performed on AAA tissue samples demonstrate the anisotropic nature of this tissue. The purpose of this work is to study the influence of geometry and material anisotropy on the magnitude and distribution of the peak wall stress in AAAs. Three-dimensional computer models of symmetric and asymmetric AAAs were generated in which the maximum diameter and length of the aneurysm were individually controlled. A five parameter exponential type structural strain-energy function was used to model the anisotropic behavior of the AAA tissue. The anisotropy is determined by the orientation of the collagen fibers (one parameter of the model). The results suggest that shorter aneurysms are more critical when asymmetries are present. They show a strong influence of the material anisotropy on the magnitude and distribution of the peak stress. Results confirm that the relative aneurysm length and the degree of aneurysmal asymmetry should be considered in a rupture risk decision criterion for AAAs.  相似文献   

10.

Background

Experimental atherosclerosis is characterized by the formation of tertiary lymphoid structures (TLOs) within the adventitial layer, which involves the chemokine-expressing aortic smooth muscle cells (SMCs). TLOs have also been described around human atherothrombotic arteries but the mechanisms of their formation remain poorly investigated. Herein, we tested whether human vascular SMCs play the role of chemokine-expressing cells that would trigger the formation of TLOs in atherothrombotic arteries.

Results

We first characterized, by flow cytometry and immunofluorescence analysis, the prevalence and cell composition of TLOs in human abdominal aneurysms of the aorta (AAAs), an evolutive form of atherothrombosis. Chemotaxis experiments revealed that the conditioned medium from AAA tissues recruited significantly more B and T lymphocytes than the conditioned medium from control (N-AAA) tissues. This was associated with an increase in the concentration of CXCL13, CXCL16, CCL19, CCL20, and CCL21 chemokines in the conditioned medium from AAA tissues. Immunofluorescence analysis of AAA cryosections revealed that α-SMA-positive SMCs were the main contributors to the chemokine production. These results were confirmed by RT-qPCR assays where we found that primary vascular SMCs from AAA tissues expressed significantly more chemokines than SMCs from N-AAA. Finally, in vitro experiments demonstrated that the inflammatory cytokines found to be increased in the conditioned medium from AAA were able to trigger the production of chemokines by primary SMCs.

Conclusion

Together, these results suggest that human vascular SMCs in atherothrombotic arteries, in response to inflammatory signals, are converted into chemokine-expressing cells that trigger the recruitment of immune cells and the formation of aortic TLOs.  相似文献   

11.

Introduction

Abdominal aortic aneurysms (AAA) are characterized by a progressive dilatation of the abdominal aorta, and are associated with a high risk of rupture once the dilatation exceeds 55 mm in diameter. A large proportion of AAA develops an intraluminal thrombus, which contributes to hypoxia, inflammation and tissue degradation. We have previously shown that patients with AAA produce clots with altered structure which is more resistant to fibrinolysis. The aim of this study was to investigate genetic polymorphisms of FXIII and fibrinogen in AAA to identify how changes to these proteins may play a role in the development of AAA.

Methods

Subjects of Western/European descent, ≥55 years of age (520 AAA patients and 449 controls) were genotyped for five polymorphisms (FXIII-A Val34Leu, FXIII-B His95Arg, FXIII-B Splice Variant (intron K nt29576C-G), Fib-A Thr312Ala and Fib-B Arg448Lys) by RT-PCR. Data were analysed by χ2 test and CubeX.

Results

The FXIII-B Arg95 allele associated with AAA (Relative risk - 1.240, CI 1.093–1.407, P = 0.006). There was no association between FXIII-A Val34Leu, FXIII-B Splice Variant, Fib-A Thr312Ala or Fib-B Arg448Lys and AAA. FXIII-B His95Arg and FXIII-B Splice variant (intron K nt29576C-G) were in negative linkage disequilibrium (D’ = −0.609, p = 0.011).

Discussion

The FXIII-B Arg95 variant is associated with an increased risk of AAA. These data suggest a possible role for FXIII in AAA pathogenesis.  相似文献   

12.

Aims

Thoracic aortic aneurysm (TAA) is potentially life-threatening and requires close follow-up to prevent aortic dissection. Aortic stiffness and size are considered to be coupled. Regional aortic stiffness in patients with TAA is unknown. We aimed to evaluate coupling between regional pulse wave velocity (PWV), a marker of vascular stiffness, and aortic diameter in TAA patients.

Methods

In 40 TAA patients (59 ± 13 years, 28 male), regional aortic diameters and regional PWV were assessed by 1.5 T MRI. The incidence of increased diameter and PWV were determined for five aortic segments (S1, ascending aorta; S2, aortic arch; S3, thoracic descending aorta; S4, suprarenal and S5, infrarenal abdominal aorta). In addition, coupling between regional PWV testing and aortic dilatation was evaluated and specificity and sensitivity were assessed.

Results

Aortic diameter was 44 ± 5 mm for the aortic root and 39 ± 5 mm for the ascending aorta. PWV was increased in 36 (19 %) aortic segments. Aortic diameter was increased in 28 (14 %) segments. Specificity of regional PWV testing for the prediction of increased regional diameter was ≥ 84 % in the descending thoracic to abdominal aorta and ≥ 68 % in the ascending aorta and aortic arch.

Conclusion

Normal regional PWV is related to absence of increased diameter, with high specificity in the descending thoracic to abdominal aorta and moderate results in the ascending aorta and aortic arch.  相似文献   

13.
Abdominal aortic aneurysm (AAA) is a vascular disease involving gradual dilation of the abdominal aorta and high rupture‐related mortality rates. AAA is histologically characterized by oxidative stress, chronic inflammation, and extracellular matrix degradation in the vascular wall. We previously demonstrated that aortic hypoperfusion could cause the vascular inflammation and AAA formation. However, the preventive method for hypoperfusion‐induced AAA remains unknown. In this study, we evaluated the effect of fish oil on AAA development using a hypoperfusion‐induced AAA animal model. Dilation of the abdominal aorta in the fish oil administration group was smaller than in the control group. Collagen destruction and oxidative stress were suppressed in the fish oil administration group than in the control group. These results suggested that fish oil could prevent the development of AAA induced by hypoperfusion.  相似文献   

14.

Objective

Understanding variations in size and pattern of development of angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) may inform translational research strategies. Thus, we sought insight into the temporal evolution of AAA in apolipoprotein (apo)E−/− mice.

Approach

A cohort of mice underwent a 4-week pump-mediated infusion of saline (n = 23) or 1500 ng/kg/min of Ang II (n = 85) and AAA development was tracked via in vivo ultrasound imaging. We adjusted for hemodynamic covariates in the regression models for AAA occurrence in relation to time.

Results

The overall effect of time was statistically significant (p<0.001). Compared to day 7 of AngII infusion, there was no decrease in the log odds of AAA occurrence by day 14 (−0.234, p = 0.65), but compared to day 21 and 28, the log odds decreased by 9.07 (p<0.001) and 2.35 (p = 0.04), respectively. Hemodynamic parameters were not predictive of change in aortic diameter (Δ) (SBP, p = 0.66; DBP, p = 0.66). Mean total cholesterol (TC) was higher among mice with large versus small AAA (601 vs. 422 mg/ml, p<0.0001), and the difference was due to LDL. AngII exposure was associated with 0.43 mm (95% CI, 0.27 to 0.61, p<0.0001) increase in aortic diameter; and a 100 mg/dl increase in mean final cholesterol level was associated with a 12% (95% CI, 5.68 to 18.23, p<0.0001) increase in aortic diameter. Baseline cholesterol was not associated with change in aortic diameter (p = 0.86).

Conclusions

These are the first formal estimates of a consistent pattern of Ang II-induced AAA development. The odds of AAA occurrence diminish after the second week of Ang II infusion, and TC is independently associated with AAA size.  相似文献   

15.

Background

Despite the importance of the renin-angiotensin (Ang) system in abdominal aortic aneurysm (AAA) pathogenesis, strategies targeting this system to prevent clinical aneurysm progression remain controversial and unproven. We compared the relative efficacy of two Ang II type 1 receptor blockers, telmisartan and irbesartan, in limiting experimental AAAs in distinct mouse models of aneurysm disease.

Methodology/Principal Findings

AAAs were induced using either 1) Ang II subcutaneous infusion (1000 ng/kg/min) for 28 days in male ApoE−/− mice, or 2) transient intra-aortic porcine pancreatic elastase infusion in male C57BL/6 mice. One week prior to AAA creation, mice started to daily receive irbesartan (50 mg/kg), telmisartan (10 mg/kg), fluvastatin (40 mg/kg), bosentan (100 mg/kg), doxycycline (100 mg/kg) or vehicle alone. Efficacy was determined via serial in vivo aortic diameter measurements, histopathology and gene expression analysis at sacrifice. Aortic aneurysms developed in 67% of Ang II-infused ApoE−/− mice fed with standard chow and water alone (n = 15), and 40% died of rupture. Strikingly, no telmisartan-treated mouse developed an AAA (n = 14). Both telmisartan and irbesartan limited aneurysm enlargement, medial elastolysis, smooth muscle attenuation, macrophage infiltration, adventitial neocapillary formation, and the expression of proteinases and proinflammatory mediators. Doxycycline, fluvastatin and bosentan did not influence aneurysm progression. Telmisartan was also highly effective in intra-aortic porcine pancreatic elastase infusion-induced AAAs, a second AAA model that did not require exogenous Ang II infusion.

Conclusion/Significance

Telmisartan suppresses experimental aneurysms in a model-independent manner and may prove valuable in limiting clinical disease progression.  相似文献   

16.
Macrophage infiltration is a prominent feature of abdominal aortic aneurysm (AAA) progression. We used a combined imaging approach with bioluminescence (BLI) and magnetic resonance imaging (MRI) to study macrophage homing and accumulation in experimental AAA disease. Murine AAAs were created via intra-aortic infusion of porcine pancreatic elastase. Mice were imaged over 14 days after injection of prepared peritoneal macrophages. For BLI, macrophages were from transgenic mice expressing luciferase. For MRI, macrophages were labeled with iron oxide particles. Macrophage accumulation during aneurysm progression was observed by in situ BLI and by in vivo 7T MRI. Mice were sacrificed after imaging for histologic analysis. In situ BLI (n = 32) demonstrated high signal in the AAA by days 7 and 14, which correlated significantly with macrophage number and aortic diameter. In vivo 7T MRI (n = 13) at day 14 demonstrated T?* signal loss in the AAA and not in sham mice. Immunohistochemistry and Prussian blue staining confirmed the presence of injected macrophages in the AAA. BLI and MRI provide complementary approaches to track macrophage homing and accumulation in experimental AAAs. Similar dual imaging strategies may aid the study of AAA biology and the evaluation of novel therapies.  相似文献   

17.
The biomechanical response of normal and pathologic human abdominal aortic tissue to uniaxial loading conditions is insufficient for the characterization of its three-dimensional (3D) mechanical behavior. Planar biaxial mechanical evaluation allows for 3D constitutive modeling of nearly incompressible tissues, as well as the investigation of the nature of mechanical anisotropy. In the current study, 26 abdominal aortic aneurysm (AAA) tissue samples and 8 age-matched (> 60 years of age) nonaneurysmal abdominal aortic (AA) tissue samples were obtained and tested using a tension-controlled biaxial testing protocol. Graphical response functions (Sun et al., 2003. J. Biomech. Eng. 125, 372-380) were used as a guide to describe the pseudo-elastic response of AA and AAA. Based on the observed pseudo-elastic response, a four-parameter exponential strain energy function developed by Vito (1990. J. Biomech. Eng. 112, 153-159) was used from which both an individual specimen and group material parameter sets were determined for both AA and AAA. Peak Green strain values in the circumferential (Ethetatheta,max) and longitudinal (ELL,max) directions under an equibiaxial tension of 120 N/m were also compared. The strain energy function fit all of the individual specimens well with an average R2 of 0.95 +/- 0.02 and 0.90 +/- 0.02 (mean +/- SEM) for the AA and AAA groups, respectively. The average Ethetatheta,max at 200 N/m equibiaxial tension was found to be significantly smaller for AAAs as compared to AAs (0.07 +/- 0.01 versus 0.13 +/- 0.03, respectively; p < 0.01). There was also a pronounced increase in the circumferential stiffness for AAA tissue as compared to AA tissue, indicating a larger degree of anisotropy for this tissue as compared to age-matched AA tissue. We also observed that the four-parameter Fung-elastic model was not able to fit the AAA tissue mechanical response using physically realistic material parameter values. It was concluded that aneurysmal degeneration of the abdominal aorta is associated with an increase in mechanical anisotropy, with preferential stiffening in the circumferential direction.  相似文献   

18.
Abdominal aortic aneurysms (AAAs) are a chronic inflammatory disease that increase the risk of life-threatening aortic rupture. In humans, AAAs have been characterized by increased expression of cyclooxygenase-2 and the inactivation of COX-2 prior to disease initiation reduces AAA incidence in a mouse model of the disease. The current study examined the effectiveness of selective cyclooxygenase-2 (COX-2) inhibition on reducing AAA progression when administered after the initiation of AAA formation. AAAs were induced in hyperlipidemic apolipoprotein E-deficient mice by chronic angiotensin II (AngII) infusion and the effect of treatment with the COX-2 inhibitor celecoxib was examined when initiated at different stages of the disease. Celecoxib treatment that was started 1 week after initiating AngII infusion reduced AAA incidence by 61% and significantly decreased AAA severity. Mice treated with celecoxib also showed significantly reduced aortic rupture and mortality. Treatment with celecoxib that was started at a late stage of AAA development also significantly reduced AAA incidence and severity. Celecoxib treatment significantly increased smooth muscle alpha-actin expression in the abdominal aorta and did not reduce expression of markers of macrophage-dependent inflammation. These findings indicate that COX-2 inhibitor treatment initiated after formation of AngII-induced AAAs effectively reduces progression of the disease in hyperlipidemic mice.  相似文献   

19.
Pulsatile flow in abdominal aortic aneurysm (AAA) models has been examined in order to understand the hemodynamics that may contribute to growth of an AAA. The model studies were conducted by experiments (flow visualization and laser Doppler velocimetry) and by numerical simulation using physiologically realistic resting and exercise flow conditions. We characterize the flow for two AAA model shapes and sizes emulating early AAA development through moderate AAA growth (mean and peak Reynolds numbers of 362<Remean<1053 and 3308<Repeak<5696 with Womersley parameter 16.4<<21.2). The results of our investigation indicate that AAA flow can be divided into three flow regimes: (i) Attached flow over the entire cycle in small AAAs at resting conditions, (ii) vortex formation and translation in moderate size AAAs at resting conditions, and (iii) vortex formation, translation and turbulence in moderate size AAAs under exercise conditions. The second two regimes are classified in the medical literature as disturbed flow conditions that have been correlated with atherogenesis as well as thrombogenesis. Thus, AAA disturbed hemodynamics may be a contributing factor to AAA growth by accelerating the degeneration of the arterial wall. Our investigation also concluded that vortex development is considerably weaker in an asymmetric AAA. Furthermore, turbulence was not observed in the asymmetric model. Finally, our investigation suggests a new mode of transition to turbulence: vortex ring instability and bursting to turbulence. The transition process depends on a combination of the pulsatile flow conditions and the tube cross-sectional area change.  相似文献   

20.
As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fibrous, stiff plaques which are most commonly found near the luminal surface in between the intima and the media layer of the vessel wall. In this study, we therefore investigate the influence of calcifications as separate AAA constituents on finite element simulation results. Thus, three AAAs are reconstructed with regard to intraluminal thrombus (ILT), calcifications and vessel wall. Each patient-specific AAA is simulated twice, once including all three AAA constituents and once neglecting calcifications as it is still common in literature. Parameters for constitutive modeling of calcifications are thereby taken from experiments performed by the authors, showing that calcifications exhibit an almost linear stress–strain behavior with a Young’s modulus E ≥ 40 MPa. Simulation results show that calcifications exhibit significant load-bearing effects and reduce stress in adjacent vessel wall. Average stress within the vessel wall is reduced by 9.7 to 59.2%. For two out of three AAAs, peak wall stress decreases when taking calcifications into consideration (8.9 and 28.9%). For one AAA, simulated peak wall stress increases by 5.5% due to stress peaks near calcification borders. However, such stress singularities due to sudden stiffness jumps are physiologically doubtful. It can further be observed that large calcifications are mostly situated in concavely shaped regions of the AAA wall. We deduce that AAA shape is influenced by existent calcifications, thus crucial errors occur if they are neglected in computational wall stress analyses. A general increase in rupture risk for calcified AAAs is doubted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号