首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vesicular trafficking has emerged as an important means by which eukaryotes modulate responses to microbial pathogens, likely by contributing to the correct localization and levels of host components necessary for effective immunity. However, considering the complexity of membrane trafficking in plants, relatively few vesicular trafficking components with functions in plant immunity are known. Here we demonstrate that Arabidopsis thaliana Dynamin-Related Protein 2B (DRP2B), which has been previously implicated in constitutive clathrin-mediated endocytosis (CME), functions in responses to flg22 (the active peptide derivative of bacterial flagellin) and immunity against flagellated bacteria Pseudomonas syringae pv. tomato (Pto) DC3000. Consistent with a role of DRP2B in Pattern-Triggered Immunity (PTI), drp2b null mutant plants also showed increased susceptibility to Pto DC3000 hrcC , which lacks a functional Type 3 Secretion System, thus is unable to deliver effectors into host cells to suppress PTI. Importantly, analysis of drp2b mutant plants revealed three distinct branches of the flg22-signaling network that differed in their requirement for RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD), the NADPH oxidase responsible for flg22-induced apoplastic reactive oxygen species production. Furthermore, in drp2b, normal MAPK signaling and increased immune responses via the RbohD/Ca2+-branch were not sufficient for promoting robust PR1 mRNA expression nor immunity against Pto DC3000 and Pto DC3000 hrcC. Based on live-cell imaging studies, flg22-elicited internalization of the plant flagellin-receptor, FLAGELLIN SENSING 2 (FLS2), was found to be partially dependent on DRP2B, but not the closely related protein DRP2A, thus providing genetic evidence for a component, implicated in CME, in ligand-induced endocytosis of FLS2. Reduced trafficking of FLS2 in response to flg22 may contribute in part to the non-canonical combination of immune signaling defects observed in drp2b. In conclusion, this study adds DRP2B to the relatively short list of known vesicular trafficking proteins with roles in flg22-signaling and PTI in plants.  相似文献   

2.
Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) constitutes an important layer of innate immunity in plants. The leucine-rich repeat (LRR) receptor kinases EF-TU RECEPTOR (EFR) and FLAGELLIN SENSING2 (FLS2) are the PRRs for the peptide PAMPs elf18 and flg22, which are derived from bacterial EF-Tu and flagellin, respectively. Using coimmunoprecipitation and mass spectrometry analyses, we demonstrated that EFR and FLS2 undergo ligand-induced heteromerization in planta with several LRR receptor-like kinases that belong to the SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family, including BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1/SERK3 (BAK1/SERK3) and BAK1-LIKE1/SERK4 (BKK1/SERK4). Using a novel bak1 allele that does not exhibit pleiotropic defects in brassinosteroid and cell death responses, we determined that BAK1 and BKK1 cooperate genetically to achieve full signaling capability in response to elf18 and flg22 and to the damage-associated molecular pattern AtPep1. Furthermore, we demonstrated that BAK1 and BKK1 contribute to disease resistance against the hemibiotrophic bacterium Pseudomonas syringae and the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Our work reveals that the establishment of PAMP-triggered immunity (PTI) relies on the rapid ligand-induced recruitment of multiple SERKs within PRR complexes and provides insight into the early PTI signaling events underlying this important layer of plant innate immunity.  相似文献   

3.
Signaling initiation by receptor-like kinases (RLKs) at the plasma membrane of plant cells often requires regulatory leucine-rich repeat (LRR) RLK proteins such as SERK or BIR proteins. The present work examined how the microbe-associated molecular pattern (MAMP) receptor FLS2 builds signaling complexes with BAK1 (SERK3). We first, using in vivo methods that validate separate findings by others, demonstrated that flg22 (flagellin epitope) ligand-initiated FLS2-BAK1 extracellular domain interactions can proceed independent of intracellular domain interactions. We then explored a candidate SERK protein interaction site in the extracellular domains (ectodomains; ECDs) of the significantly different receptors FLS2, EFR (MAMP receptors), PEPR1 (damage-associated molecular pattern (DAMP) receptor), and BRI1 (hormone receptor). Repeat conservation mapping revealed a cluster of conserved solvent-exposed residues near the C-terminus of models of the folded LRR domains. However, site-directed mutagenesis of this conserved site in FLS2 did not impair FLS2-BAK1 ECD interactions, and mutations in the analogous site of EFR caused receptor maturation defects. Hence this conserved LRR C-terminal region apparently has functions other than mediating interactions with BAK1. In vivo tests of the subsequently published FLS2-flg22-BAK1 ECD co-crystal structure were then performed to functionally evaluate some of the unexpected configurations predicted by that crystal structure. In support of the crystal structure data, FLS2-BAK1 ECD interactions were no longer detected in in vivo co-immunoprecipitation experiments after site-directed mutagenesis of the FLS2 BAK1-interaction residues S554, Q530, Q627 or N674. In contrast, in vivo FLS2-mediated signaling persisted and was only minimally reduced, suggesting residual FLS2-BAK1 interaction and the limited sensitivity of co-immunoprecipitation data relative to in vivo assays for signaling outputs. However, Arabidopsis plants expressing FLS2 with the Q530A+Q627A double mutation were impaired both in detectable interaction with BAK1 and in FLS2-mediated responses, lending overall support to current models of FLS2 structure and function.  相似文献   

4.
Ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (FLS2) is critical for maintaining its proper abundance in the plasma membrane (PM) to initiate and subsequently down regulate cellular immune responses to bacterial flagellin or flg22-peptide. The molecular components governing PM abundance of FLS2, however, remain mostly unknown. Here, we identified Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1A (DRP1A), a member of a plant-specific family of large dynamin GTPases, as a critical contributor to ligand-induced endocytosis of FLS2 and its physiological roles in flg22-signaling and immunity against Pseudomonas syringae pv. tomato DC3000 bacteria in leaves. Notably, drp1a single mutants displayed similar flg22-defects as those previously reported for mutants in another dynamin-related protein, DRP2B, that was previously shown to colocalize with DRP1A. Our study also uncovered synergistic roles of DRP1A and DRP2B in plant growth and development as drp1a drp2b double mutants exhibited severely stunted roots and cotyledons, as well as defective cell shape, cytokinesis, and seedling lethality. Furthermore, drp1a drp2b double mutants hyperaccumulated FLS2 in the PM prior to flg22-treatment and exhibited a block in ligand-induced endocytosis of FLS2, indicating combinatorial roles for DRP1A and DRP1B in governing PM abundance of FLS2. However, the increased steady-state PM accumulation of FLS2 in drp1a drp2b double mutants did not result in increased flg22 responses. We propose that DRP1A and DRP2B are important for the regulation of PM-associated levels of FLS2 necessary to attain signaling competency to initiate distinct flg22 responses, potentially through modulating the lipid environment in defined PM domains.

A plant-specific large dynamin GTPase is required for plant responses against bacterial pathogens and, with another dynamin, regulates the cell surface composition for plant growth and defense.  相似文献   

5.

Background

The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance.

Principal Findings

We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs.

Conclusions/Significance

We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.  相似文献   

6.
FLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mechanisms for activation of FLS2 signaling remain unclear. The present study initially identified multiple FLS2 in vitro phosphorylation sites and found that Serine-938 is important for FLS2 function in vivo. FLS2-mediated immune responses are abolished in transgenic plants expressing FLS2S938A, while the acidic phosphomimic mutants FLS2S938D and FLS2S938E conferred responses similar to wild-type FLS2. FLS2-BAK1 association and FLS2-BIK1 disassociation after flg22 exposure still occur with FLS2S938A, demonstrating that flg22-induced BIK1 release and BAK1 binding are not sufficient for FLS2 activity, and that Ser-938 controls other aspects of FLS2 activity. Purified BIK1 still phosphorylated purified FLS2S938A and FLS2S938D mutant kinase domains in vitro. Phosphorylation of BIK1 and homologs after flg22 exposure was disrupted in transgenic Arabidopsis thaliana plants expressing FLS2S938A or FLS2D997A (a kinase catalytic site mutant), but was normally induced in FLS2S938D plants. BIK1 association with FLS2 required a kinase-active FLS2, but FLS2-BAK1 association did not. Hence FLS2-BIK1 dissociation and FLS2-BAK1 association are not sufficient for FLS2-mediated defense activation, but the proposed FLS2 phosphorylation site Ser-938 and FLS2 kinase activity are needed both for overall defense activation and for appropriate flg22-stimulated phosphorylation of BIK1 and homologs.  相似文献   

7.
Melatonin (MT) plays important roles in plant disease response, but the mechanisms are largely unknown. Here, we show that MT functions in stomatal immunity in Panax notoginseng and Arabidopsis thaliana. Biochemical analyses showed that MT-induced stomatal closure plays a prominent role in preventing invasion of bacteria Pseudomonas syringe pv. tomato (Pst) DC3000 via activation of mitogen-activated protein kinase (MAPK) and NADPH oxidase-mediated reactive oxygen species production in P. notoginseng. The first putative phytomelatonin receptor 1 (PMTR1) is a plasma membrane protein required for perceiving MT signaling in stomatal closure and activation of MAPK. Biochemical and genetic tests found PMTR1 is essential for flg22- and MT-induced MAPK activation in a heterotrimeric GTP-binding protein Gα subunit GPA1-independent manner. GPA1 functions in the same genetic pathways of FLS2/BAK1 (Flagellin Sensing 2/Brassinosteroid Insensitive 1-associated kinase 1)- as well as PMTR1-mediated flg22 and MT signaling in stomatal closure. The stomata in pmtr1 are insensitive to MT and flg22, but the application of MT induces stomatal closure and reduces the bacterial growth in fls2 and bak1 plants, indicating that PMTR1 might be a downstream signaling component in FLS2- and BAK1-mediated stomatal immunity. In summary, our results (i) demonstrate that phytomelatonin functions in the priming of stomatal immunity and (ii) provide insights into the phytomelatonin signaling transduction pathway.

Melatonin regulates plant innate immunity via the putative receptor PMTR1, which mediates the activation of MAPK cascades and GPA1 signaling.  相似文献   

8.
The Arabidopsis FLAGELLIN SENSITIVE2 (FLS2) protein is a leucine-rich repeat receptor-like kinase (LRR-RLK) that plays important roles in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The binding of bacterial flagellin, one of the PAMPs, to the extracellular domain of FLS2 leads to activation of signaling cascades resulting in activation or repression of a specific set of genes involved in plant defense. The mechanisms at the cell membrane that lead to the activation of this signalling pathway are, however, not fully understood. Recently, we have shown that after ligand-treatment the mobility of FLS2 in the cell membrane is reduced and that the activation of FLS2 does not involve its constitutive or ligand-dependent homodimerization. Our data together with recently published reports suggest that FLS2 activation involves its association with other proteins, including BRI1-associated kinase 1 (BAK1), another LRR-RLK, and localization to less mobile areas, probably lipid rafts, in a ligand-dependent manner to initiate PTI.Key words: PTI, BiFC, flg22, FLS2, FRAP, FRET, membrane protein, RLK  相似文献   

9.
? Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. ? The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. ? PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. ? CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.  相似文献   

10.
The plant immune receptor FLAGELLIN SENSING 2 (FLS2) is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22). We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity.  相似文献   

11.
Research of the last decade has revealed that plant immunity consists of different layers of defense that have evolved by the co-evolutional battle of plants with its pathogens. Particular light has been shed on PAMP- (pathogen-associated molecular pattern) triggered immunity (PTI) mediated by pattern recognition receptors. Striking similarities exist between the plant and animal innate immune system that point for a common optimized mechanism that has evolved independently in both kingdoms. Pattern recognition receptors (PRRs) from both kingdoms consist of leucine-rich repeat receptor complexes that allow recognition of invading pathogens at the cell surface. In plants, PRRs like FLS2 and EFR are controlled by a co-receptor SERK3/BAK1, also a leucine-rich repeat receptor that dimerizes with the PRRs to support their function. Pathogens can inject effector proteins into the plant cells to suppress the immune responses initiated after perception of PAMPs by PRRs via inhibition or degradation of the receptors. Plants have acquired the ability to recognize the presence of some of these effector proteins which leads to a quick and hypersensitive response to arrest and terminate pathogen growth.  相似文献   

12.
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms.  相似文献   

13.
14.
Plant pathogens use effector proteins to target host processes involved in pathogen perception, immune signalling, or defence outputs. Unlike foliar pathogens, it is poorly understood how root-invading pathogens suppress immunity. The Avr2 effector from the tomato root- and xylem-colonizing pathogen Fusarium oxysporum suppresses immune signalling induced by various pathogen-associated molecular patterns (PAMPs). It is unknown how Avr2 targets the immune system. Transgenic AVR2 Arabidopsis thaliana phenocopies mutants in which the pattern recognition receptor (PRR) co-receptor BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) or its downstream signalling kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) are knocked out. We therefore tested whether these kinases are Avr2 targets. Flg22-induced complex formation of the PRR FLAGELLIN SENSITIVE 2 and BAK1 occurred in the presence and absence of Avr2, indicating that Avr2 does not affect BAK1 function or PRR complex formation. Bimolecular fluorescence complementation assays showed that Avr2 and BIK1 co-localize in planta. Although Avr2 did not affect flg22-induced BIK1 phosphorylation, mono-ubiquitination was compromised. Furthermore, Avr2 affected BIK1 abundance and shifted its localization from nucleocytoplasmic to the cell periphery/plasma membrane. Together, these data imply that Avr2 may retain BIK1 at the plasma membrane, thereby suppressing its ability to activate immune signalling. Because mono-ubiquitination of BIK1 is required for its internalization, interference with this process by Avr2 could provide a mechanistic explanation for the compromised BIK1 mobility upon flg22 treatment. The identification of BIK1 as an effector target of a root-invading vascular pathogen identifies this kinase as a conserved signalling component for both root and shoot immunity.  相似文献   

15.
Eukaryotes have evolved programmed cell death (PCD) mechanisms that play important roles in both, development and immunity.13 We demonstrated a requirement for the Arabidopsis thaliana leucine-rich repeat receptor-like kinase (LRR-RLK), BAK1/SERK3 (BRI1-Associated receptor Kinase 1/Somatic Embryogenesis Receptor Kinase 3) in regulating the containment of microbial infection-induced necrosis. BAK1-deficient plants showed constitutive expression of defense-related genes and developed spreading cell death upon infection by necrotizing pathogens that result in enhanced susceptibility to necrotrophic pathogens. This reaction was not inducible by exposition of bak1 mutants to general stresses but appeared to be solely inducible by necrotizing pathogen infection. BAK1 is known to interact with the brassinosteroid receptor, BRI1, and thereby facilitates plant growth and development in a brassinolide (BL)-dependent manner.4,5 Surprisingly, the cell death-related phenotype in bak1 mutants is brassinolide-independent. In this addendum we want to present recent new data on BAK1 and discuss its role as a general regulator in plant processes being as diverse as brassinosteroid signaling in development, perception of pathogen associated molecular patterns (PAMPs), and cell-death control in innate immunity.Key words: LRR-RLK, cell-death control, immunity, brassinosteroids, BAK1, SERK3, BRI1, FLS2  相似文献   

16.
Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.  相似文献   

17.
Receptor kinases sense extracellular signals and trigger intracellular signaling and physiological responses. However, how does signal binding to the extracellular domain activate the cytoplasmic kinase domain? Activation of the plant immunoreceptor Flagellin sensing2 (FLS2) by its bacterial ligand flagellin or the peptide-epitope flg22 coincides with rapid complex formation with a second receptor kinase termed brassinosteroid receptor1 associated kinase1 (BAK1). Here, we show that the receptor pair of FLS2 and BAK1 is also functional when the roles of the complex partners are reversed by swapping their cytosolic domains. This reciprocal constellation prevents interference by redundant partners that can partially substitute for BAK1 and demonstrates that formation of the heteromeric complex is the molecular switch for transmembrane signaling. A similar approach with swaps between the Elongation factor-Tu receptor and BAK1 also resulted in a functional receptor/coreceptor pair, suggesting that a “two-hybrid-receptor assay” is of more general use for studying heteromeric receptor complexes.Cell surface receptors are chemical sensors, often with an exquisite specificity and sensitivity, which detect extracellular signals and initiate corresponding intracellular response programs. Many of these receptors are transmembrane proteins with an extracellular ligand-binding domain and an intracellular protein kinase domain. Higher plants, such as Arabidopsis (Arabidopsis thaliana), have several hundred genes encoding receptor like kinases (Shiu and Bleecker, 2001; Shiu and Li, 2004). How are these receptor like kinases activated by their ligands, and how do they initiate a subsequent intracellular signaling cascade? In our work, we used the leucine-rich repeat receptor kinase (LRR-RK) Flagellin sensing2 (FLS2), which specifically detects bacterial flagellin or its peptide epitope flg22 at subnanomolar concentrations (Gomez-Gomez and Boller, 2000; Gómez-Gómez et al., 2001; Chinchilla et al., 2006). FLS2 undergoes heteromeric complex formation with brassinosteroid receptor1 associated kinase1 (BAK1) within seconds after application of the flagellin-derived peptide ligand flg22 (Chinchilla et al., 2007; Heese et al., 2007; Schulze et al., 2010). Thus, BAK1 might act as a coreceptor of FLS2. However, as previously observed (Chinchilla et al., 2007; Roux et al., 2011), FLS2 is still functional in the absence of BAK1, although with a reduced efficiency. This raises the question whether the ligand-induced heteromeric complex has merely an enhancing effect or whether association with BAK1 or a functional substitute acts as the essential switch-on for transmembrane signaling of FLS2. BAK1 is one of the five members that form the somatic embryogenesis receptor kinase (SERK) family (Albrecht et al., 2008), and other members of this family might partially substitute for BAK1 (Roux et al., 2011). However, a rigorous genetic approach to delineate the role of these potential substitutes is not feasible because triple mutants (serk1 serk3 serk4) and quadruple mutants (serk1 serk2 serk3 serk4) exhibit severe general phenotypes of dwarfing or even lethality at the early embryo stage (He et al., 2007; Gou et al., 2012) that might be due to the important role of SERKs in plant developmental processes (Li et al., 2002; Nam and Li, 2002).To address the role of the heteromeric complex with BAK1 in the absence of other interfering SERKs, we took a two-hybrid-receptor approach based on the premise that the apoplastic and cytoplasmic domains of FLS2 and BAK1 function in a modular manner. A heteromeric complex might thus also form and function when the roles of FLS2 and BAK1 are reversed by reciprocal swapping of their cytoplasmic protein kinase domains (Fig. 1A, schematic view).Open in a separate windowFigure 1.Heteromeric complex formation of FLS with BAK1 switches on flagellin-dependent transmembrane signaling. A, Model for the flg22-dependent heteromeric receptor complex. Schematic representation of FLS2 (blue), BAK1 (red), and the chimeric receptor constructs Ftm-B and Btm-F. Ftm-B comprises the extracellular and the transmembrane domains of FLS2 (blue) and the cytoplasmic domain of BAK1 (red). The receptor chimera Btm-F represents the reciprocal construct with the cytoplasmic part of BAK1 replaced by that of FLS2. The cytoplasmic domain of FLS2 was C-terminally tagged with a GFP. B and C, Functional comparison of native FLS2 and BAK1 (B) with the two hybrid receptors Ftm-B and Btm-F (C). The experiments show luciferase activity in Arabidopsis fls2 bak1-4 double mutant protoplasts cotransformed with pFRK1::Luciferase as a reporter and the receptor constructs indicated. At 0 h (dashed line) protoplasts were treated with 100 nm of flg22 (black diamonds) or 100 nm of the inactive analog flg22Atum (white circles). Light emission of the protoplasts was measured with a luminometer. Values represent averages and sds of three replicates. Data shown are representative for at least three independent repetitions of the experiments with all constructs. D and E, Dose-response relationship for flg22-dependent induction of pFRK1::Luciferase in protoplasts expressing the receptor constructs indicated. Values represent increase in luciferase activity after 5 h of treatment as percentage of the increase observed with FLS2 plus BAK1 treated with saturating doses of greater than or equal to 10 nm flg22. Comparison of (half-maximal stimulation values in D and E shows that cells coexpressing Ftm-B plus Btm-F responded at least as sensitive to flg22 as cells coexpressing FLS2 plus BAK1. A combination of Ftm-B with the kinase dead version Btm-FKD was not functional, even when treated with 1,000 nm flg22. LU, Light units.  相似文献   

18.
Plant cells recognize microbial patterns with the plasma-membrane-localized pattern-recognition receptors consisting mainly of receptor kinases (RKs) and receptor-like proteins (RLPs). RKs, such as bacterial flagellin receptor FLS2, and their downstream signaling components have been studied extensively. However, newly discovered regulatory components of RLP-mediated immune signaling, such as the nlp20 receptor RLP23, await identification. Unlike RKs, RLPs lack a cytoplasmic kinase domain, instead recruiting the receptor-like kinases (RLKs) BAK1 and SOBIR1. SOBIR1 specifically works as an adapter for RLP-mediated immunity. To identify new regulators of RLP-mediated signaling, we looked for SOBIR1-binding proteins (SBPs) in Arabidopsis thaliana using protein immunoprecipitation and mass spectrometry, identifying two G-type lectin RLKs, SBP1 and SBP2, that physically interacted with SOBIR1. SBP1 and SBP2 showed high sequence similarity, were tandemly repeated on chromosome 4, and also interacted with both RLP23 and BAK1. sbp1 sbp2 double mutants obtained via CRISPR-Cas9 gene editing showed severely impaired nlp20-induced reactive oxygen species burst, mitogen-activated protein kinase (MAPK) activation, and defense gene expression, but normal flg22-induced immune responses. We showed that SBP1 regulated nlp20-induced immunity in a kinase activity-independent manner. Furthermore, the nlp20-induced the RLP23–BAK1 interaction, although not the flg22-induced FLS2–BAK1 interaction, was significantly reduced in sbp1 sbp2. This study identified SBPs as new regulatory components in RLP23 receptor complex that may specifically modulate RLP23-mediated immunity by positively regulating the interaction between the RLP23 receptor and the BAK1 co-receptor.  相似文献   

19.
The Arabidopsis (Arabidopsis thaliana) SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes belong to a small family of five plant receptor kinases that are involved in at least five different signaling pathways. One member of this family, BRASSINOSTEROID INSENSITIVE1 (BRI1)-ASSOCIATED KINASE1 (BAK1), also known as SERK3, is the coreceptor of the brassinolide (BR)-perceiving receptor BRI1, a function that is BR dependent and partially redundant with SERK1. BAK1 (SERK3) alone controls plant innate immunity, is also the coreceptor of the flagellin receptor FLS2, and, together with SERK4, can mediate cell death control, all three in a BR-independent fashion. SERK1 and SERK2 are essential for male microsporogenesis, again independent from BR. SERK5 does not appear to have any function under the conditions tested. Here, we show that the different SERK members are only redundant in pairs, whereas higher order mutant combinations only show additive phenotypes. Surprisingly, SERK members that are redundant within one are not redundant in another pathway. We also show that this evolution of functional pairs occurred by a change in protein function and not by differences in spatial expression. We propose that, in plants, closely related receptor kinases have a minimal homo- or heterodimeric configuration to achieve specificity.  相似文献   

20.
Molecular mechanisms that distinguish self and non-self are fundamental in innate immunity to prevent infections in plants and animals. Recognition of the conserved microbial components triggers immune responses against a broad spectrum of potential pathogens. In Arabidopsis, bacterial flagellin was perceived by a leucine-rich repeat-receptor-like kinase (LRR-RLK) FLS2. Upon flagellin perception, FLS2 forms a complex with another LRR-RLK BAK1. The intracellular signaling events downstream of FLS2/BAK1 receptor complex are still poorly understood. We recently identified a receptor-like cytoplasmic kinase (RLCK) BIK1 that associates with flagellin receptor complex to initiate plant innate immunity. BIK1 is rapidly phosphorylated upon flagellin perception in an FLS2- and BAK1-dependent manner. BAK1 directly phosphorylates BIK1 with an in vitro kinase assay. Plants have evolved a large number of RLCK genes involved in a wide range of biological processes. We provided evidence here that additional RLCKs could also be phosphorylated by flagellin and may play redundant role with BIK1 in plant innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号